Case-Based Reasoning and Analogy: a Turbulent Love Story

Jean Lieber Université de Lorraine, CNRS, Inria, LORIA, Nancy

ATA@ICCBR-2023

CBR and analogy: an RCC8 view

Overview

Preliminaries:

- Some definitions about CBR
- Some definitions about analogy
- A subjective chronological viewpoint
- CBR examined from the viewpoint of proportional analogies
- Using analogical proportions for reasoning with cases
- Adaptation knowledge learning and analogy
- Is there a way to conclude this talk?

Preliminaries

Warning:

- ► To the CBR-ians: the first part is boring for you.
- ► To the analogists: the second part is boring for you.
- ► To all: please wake up after the preliminaries!

 In all generality: a representation of a problem-solving episode

- In all generality:
 a representation of a problem-solving episode
 Broblem solution model: a case is a pair (x, x)
- ▶ Problem-solution model: a case is a pair (x, y) where

- ▶ $y \in S$
- $\blacktriangleright \ x \rightsquigarrow y$ where \rightsquigarrow reads "has for solution"

- In all generality: a representation of a *problem-solving episode Problem-solution model*: a case is a pair (x, y) where
 - $x \in \mathcal{P}$
 - ▶ $y \in S$
 - $\blacktriangleright \ x \rightsquigarrow y \text{ where } \rightsquigarrow \text{ reads "has for solution"}$
 - ▶ \rightsquigarrow is usually uncompletely known by the CBR system, but known for *source cases* $(x^s, y^s) \in CB$.

- In all generality: a representation of a problem-solving episode
- ▶ Problem-solution model: a case is a pair (x, y) where
 - $x \in \mathcal{P}$
 - ▶ $y \in S$
 - \blacktriangleright x \rightsquigarrow y where \rightsquigarrow reads "has for solution"
 - ▶ \rightsquigarrow is usually uncompletely known by the CBR system, but known for *source cases* $(x^s, y^s) \in CB$.
 - ► There may have additional information associated with (x^s, y^s) (e.g. partial information about the reasoning process x^s → y^s).

- In all generality: a representation of a problem-solving episode
- ▶ Problem-solution model: a case is a pair (x, y) where
 - $x \in \mathcal{P}$
 - ▶ $y \in S$
 - $\blacktriangleright~x \rightsquigarrow y$ where \rightsquigarrow reads "has for solution"
 - ▶ \rightsquigarrow is usually uncompletely known by the CBR system, but known for *source cases* $(x^s, y^s) \in CB$.
 - ► There may have additional information associated with (x^s, y^s) (e.g. partial information about the reasoning process x^s → y^s).
- Query-result model: a case is an object (...)

- In all generality: a representation of a problem-solving episode
- Problem-solution model: a case is a pair (x, y) where
 - $\blacktriangleright x \in \mathcal{P}$
 - ▶ $y \in S$
 - $\blacktriangleright~x \rightsquigarrow y$ where \rightsquigarrow reads "has for solution"
 - ▶ \rightsquigarrow is usually uncompletely known by the CBR system, but known for *source cases* $(x^s, y^s) \in CB$.
 - ► There may have additional information associated with (x^s, y^s) (e.g. partial information about the reasoning process x^s → y^s).
- Query-result model: a case is an object (...)
 - Target query: Q^{tgt}

- In all generality:
 - a representation of a problem-solving episode
- ▶ Problem-solution model: a case is a pair (x, y) where
 - $\blacktriangleright \ \mathtt{x} \in \mathcal{P}$
 - ▶ $y \in S$
 - $\blacktriangleright\ x \rightsquigarrow y$ where \rightsquigarrow reads "has for solution"
 - ▶ \rightsquigarrow is usually uncompletely known by the CBR system, but known for *source cases* $(x^s, y^s) \in CB$.
 - ► There may have additional information associated with (x^s, y^s) (e.g. partial information about the reasoning process x^s → y^s).
- Query-result model: a case is an object (...)
 - Target query: Q^{tgt}
 - If there is an exact match of a source case to the query: DB

In all generality:

- a representation of a problem-solving episode
- ▶ Problem-solution model: a case is a pair (x, y) where
 - $x \in \mathcal{P}$
 - ▶ $y \in S$
 - $\blacktriangleright~x \rightsquigarrow y$ where \rightsquigarrow reads "has for solution"
 - ▶ \rightsquigarrow is usually uncompletely known by the CBR system, but known for *source cases* $(x^s, y^s) \in CB$.
 - ► There may have additional information associated with (x^s, y^s) (e.g. partial information about the reasoning process x^s → y^s).

Query-result model: a case is an object (...)

- Target query: Q^{tgt}
- If there is an exact match of a source case to the query: DB
- Else, requires some inexact matching and adaptation.

$\frac{\text{CBR } (2/4)}{\text{The process model: 2Rs from the 4Rs}}$

 x^{tgt}

$\frac{\text{CBR } (2/4)}{\text{The process model: 2Rs from the 4Rs}}$

CBR (2/4) The process model: 2Rs from the 4Rs

$\frac{\text{CBR } (2/4)}{\text{The process model: 2Rs from the 4Rs}}$

$\frac{\text{CBR } (2/4)}{\text{The process model: 2Rs from the 4Rs}}$

CBR knowledge base = {CB, DK, AK, RK}

CB: the case base

$\mathsf{CBR} \text{ knowledge base} = \{\texttt{CB}, \texttt{DK}, \texttt{AK}, \texttt{RK}\}$

CB: the case base
 DK: the domain knowledge (aka domain ontology)

CBR knowledge base = {CB, DK, AK, RK}

- CB: the case base
- DK: the domain knowledge (aka domain ontology)
 - Given x and y, DK gives necessary conditions for "y is a solution to the problem x".

CBR knowledge base = {CB, DK, AK, RK}

- CB: the case base
- DK: the domain knowledge (aka domain ontology)
 - Given x and y, DK gives necessary conditions for "y is a solution to the problem x".
- AK: adaptation knowledge (e.g. adaptation rules)

CBR knowledge base = {CB, DK, AK, RK}

- CB: the case base
- DK: the domain knowledge (aka domain ontology)
 - Given x and y, DK gives necessary conditions for "y is a solution to the problem x".
- AK: adaptation knowledge (e.g. adaptation rules)
- RK: retrieval knowledge
 (e.g. distance function or similarity measure on P)

Ian Watson has raised the question Is CBR a Technology or a Methodology?

1998

Ian Watson has raised the question Is CBR a Technology or a Methodology?

1998

Ian's answer: a methodology

CBR (4/4)

Ian Watson has raised the question Is CBR a Technology or a Methodology?

1998

- Ian's answer: a methodology
- But that does not imply that all studies in CBR are methodological ones.

CBR (4/4)

Ian Watson has raised the question Is CBR a Technology or a Methodology?

1998

- Ian's answer: a methodology
- But that does not imply that all studies in CBR are methodological ones.
- There are some technological studies on CBR.

What is meant by "analogy" in this talk?

- What is meant by "analogy" in this talk?
- Everything that is related to reasoning with a structure "a is to b as c is to d".

- What is meant by "analogy" in this talk?
- Everything that is related to reasoning with a structure "a is to b as c is to d".
- No more.

- What is meant by "analogy" in this talk?
- Everything that is related to reasoning with a structure "a is to b as c is to d".
- No more.
- No less.

- What is meant by "analogy" in this talk?
- Everything that is related to reasoning with a structure "a is to b as c is to d".
- No more.
- No less.
- ► In particular, analogical proportions.

A quaternary relation on a set U denoted by a:b::c:d and satisfying some postulates.

- A quaternary relation on a set U denoted by a:b::c:d and satisfying some postulates.
- Intuition: a:b::c:d if what is similar/dissimilar from a to b is equivalent to what is similar/dissimilar from c to d

- A quaternary relation on a set U denoted by a:b::c:d and satisfying some postulates.
- Intuition: a:b::c:d if what is similar/dissimilar from a to b is equivalent to what is similar/dissimilar from c to d
- ▶ **** postulates: the ones that seem to be universally accepted.
- *** postulates: widely accepted but under debate
- ** postulates: accepted by some analogists, rejected by others
- * postulates: well...

- A quaternary relation on a set U denoted by a:b::c:d and satisfying some postulates.
- Intuition: a:b::c:d if what is similar/dissimilar from a to b is equivalent to what is similar/dissimilar from c to d
- ▶ **** postulates: the ones that seem to be universally accepted.
- *** postulates: widely accepted but under debate
- ** postulates: accepted by some analogists, rejected by others
- * postulates: well...
- According to who?

- A quaternary relation on a set U denoted by a:b::c:d and satisfying some postulates.
- Intuition: a:b::c:d if what is similar/dissimilar from a to b is equivalent to what is similar/dissimilar from c to d
- ▶ **** postulates: the ones that seem to be universally accepted.
- *** postulates: widely accepted but under debate
- ** postulates: accepted by some analogists, rejected by others
- * postulates: well...
- According to who?
- According to me.

But you can disagree!
- A quaternary relation on a set U denoted by a:b::c:d and satisfying some postulates.
- Intuition: a:b::c:d if what is similar/dissimilar from a to b is equivalent to what is similar/dissimilar from c to d
- ▶ **** postulates: the ones that seem to be universally accepted.
- *** postulates: widely accepted but under debate
- ** postulates: accepted by some analogists, rejected by others
- * postulates: well...
- According to who?
- According to me.

But you can disagree! (If you dare...)

A set of non-independent postulates

```
**** a:b::a:b
**** a:a::b:b
**** If a:b::a:x then x = b
*** If a:a::b:x then x = b
**** If a:b::c:d then c:d::a:b
*** If a:b::c:d then a:c::b:d
*** If a:b::c:d then d:b::c:a
*** If a:b::c:d and c:d::e:f then a:b::e:f
```

Analogical equations

► Given a, b, c ∈ U and a symbol y (called unknown): expression a:b::c:y

Analogical equations

- ► Given a, b, c ∈ U and a symbol y (called unknown): expression a:b::c:y
- ► Solving a:b::c:y: finding the set {d ∈ U | a:b::c:d}

Analogical equations

- ► Given a, b, c ∈ U and a symbol y (called unknown): expression a:b::c:y
- Solving a: b::c:y: finding the set {d ∈ U | a: b::c:d}

 Depending on the analogical proportion, an analogical equation may have
 0, 1, more than 1 solution(s).

Examples of analogical proportions

Arithmetical analogical proportions:

```
a:b::c:d if b-a=d-c
```

(parallelogram abdc)

Examples of analogical proportions

Arithmetical analogical proportions:

```
a:b::c:d if b-a=d-c
```

(parallelogram abdc)

Examples of analogical proportions

Arithmetical analogical proportions:

```
a:b::c:d if b-a=d-c
```

(parallelogram abdc)

• More generally, on a commutative group (G, +)

Examples of analogical proportions

Arithmetical analogical proportions:

a:b::c:d if b-a=d-c

(parallelogram abdc)

On Z, R, Rⁿ
More generally, on a commutative group (G, +)
On B = {0,1} where b − a ∈ {−1,0,1}, on Bⁿ

Examples of analogical proportions

Arithmetical analogical proportions:

```
a:b::c:d if b-a=d-c
```

(parallelogram abdc)

Yves Lepage's analogy on strings

A subjective chronological viewpoint

In parallel:

 Childhood of CBR Ch. Riesbeck and R. G. Schank, *Inside Case-Based Reasoning*, 1989 (MOPs, CHEF, etc.)

In parallel:

 Childhood of CBR Ch. Riesbeck and R. G. Schank, *Inside Case-Based Reasoning*, 1989 (MOPs, CHEF, etc.)

- Planning by analogy
 - J. G. Carbonell 1983 (TA) and 1986 (DA)

In parallel:

 Childhood of CBR Ch. Riesbeck and R. G. Schank, *Inside Case-Based Reasoning*, 1989 (MOPs, CHEF, etc.)

- Planning by analogy
 - J. G. Carbonell 1983 (TA) and 1986 (DA)
 - TA: transformational analogy

In parallel:

- Childhood of CBR
 Ch. Riesbeck and R. G. Schank, *Inside Case-Based Reasoning*, 1989 (MOPs, CHEF, etc.)
- Planning by analogy
 - J. G. Carbonell 1983 (TA) and 1986 (DA)
 - TA: transformational analogy
 - DA: derivational analogy

In parallel:

Childhood of CBR

Ch. Riesbeck and R. G. Schank, *Inside Case-Based Reasoning*, 1989 (MOPs, CHEF, etc.)

Planning by analogy

J. G. Carbonell 1983 (TA) and 1986 (DA)

- TA: transformational analogy
- DA: derivational analogy
- PhD thesis of Manuela Veloso (defense in 1993)

In parallel:

Childhood of CBR

Ch. Riesbeck and R. G. Schank, *Inside Case-Based Reasoning*, 1989 (MOPs, CHEF, etc.)

Planning by analogy

J. G. Carbonell 1983 (TA) and 1986 (DA)

- TA: transformational analogy
- DA: derivational analogy
- PhD thesis of Manuela Veloso (defense in 1993)
 - Multiple case retrieval and adaptation

In parallel:

Childhood of CBR

Ch. Riesbeck and R. G. Schank, *Inside Case-Based Reasoning*, 1989 (MOPs, CHEF, etc.)

Planning by analogy

J. G. Carbonell 1983 (TA) and 1986 (DA)

- TA: transformational analogy
- DA: derivational analogy
- PhD thesis of Manuela Veloso (defense in 1993)
 - Multiple case retrieval and adaptation
 - Footprinting the initial state
 - \rightarrow The similarity between x^{s} and x^{tgt} should depend on $y^{s}.$

In parallel:

Childhood of CBR

Ch. Riesbeck and R. G. Schank, *Inside Case-Based Reasoning*, 1989 (MOPs, CHEF, etc.)

Planning by analogy

J. G. Carbonell 1983 (TA) and 1986 (DA)

- TA: transformational analogy
- DA: derivational analogy
- PhD thesis of Manuela Veloso (defense in 1993)
 - Multiple case retrieval and adaptation
 - Footprinting the initial state
 - \rightarrow The similarity between x^{s} and x^{tgt} should depend on $y^{s}.$
 - Shift in vocabulary:

planning by analogy became case-based planning

In parallel:

Childhood of CBR

Ch. Riesbeck and R. G. Schank, *Inside Case-Based Reasoning*, 1989 (MOPs, CHEF, etc.)

Planning by analogy

J. G. Carbonell 1983 (TA) and 1986 (DA)

- TA: transformational analogy
- DA: derivational analogy
- PhD thesis of Manuela Veloso (defense in 1993)
 - Multiple case retrieval and adaptation
 - Footprinting the initial state
 - \rightarrow The similarity between x^{s} and x^{tgt} should depend on $y^{s}.$
 - Shift in vocabulary:

planning by analogy became case-based planning

• At that time, analogy \simeq CBR

Late 1980s, a French group of researchers worked on analogy D. Coulon, J.-F. Boivieux, L. Bourrelly, L. Bruneau, E. Chouraqui, J.-M. David, C. R. Lu, M. Py, J. Savelli, B. Séroussi, C. Vrain, Le raisonnement par analogie en intelligence artificielle, 1990

Late 1980s, a French group of researchers worked on analogy D. Coulon, J.-F. Boivieux, L. Bourrelly, L. Bruneau, E. Chouraqui, J.-M. David, C. R. Lu, M. Py, J. Savelli, B. Séroussi, C. Vrain, *Le raisonnement par analogie en intelligence artificielle*, 1990

 Among the themes discussed in this group: inter-domain analogy vs intra-domain analogy

Late 1980s, a French group of researchers worked on analogy D. Coulon, J.-F. Boivieux, L. Bourrelly, L. Bruneau, E. Chouraqui, J.-M. David, C. R. Lu, M. Py, J. Savelli, B. Séroussi, C. Vrain, *Le raisonnement par analogie en intelligence artificielle*, 1990

 Among the themes discussed in this group: *inter-domain analogy* vs *intra-domain analogy* (a debatable distinction)

Late 1980s, a French group of researchers worked on analogy D. Coulon, J.-F. Boivieux, L. Bourrelly, L. Bruneau, E. Chouraqui, J.-M. David, C. R. Lu, M. Py, J. Savelli, B. Séroussi, C. Vrain, *Le raisonnement par analogie en intelligence artificielle*, 1990

 Among the themes discussed in this group: *inter-domain analogy* vs *intra-domain analogy* (a debatable distinction)

1993: first French workshop on CBR (raisonnement à partir de cas)

Late 1980s, a French group of researchers worked on analogy D. Coulon, J.-F. Boivieux, L. Bourrelly, L. Bruneau, E. Chouraqui, J.-M. David, C. R. Lu, M. Py, J. Savelli, B. Séroussi, C. Vrain, *Le raisonnement par analogie en intelligence artificielle*, 1990

Among the themes discussed in this group: inter-domain analogy vs intra-domain analogy

(a debatable distinction)

- ▶ 1993: first French workshop on CBR (raisonnement à partir de cas)
- Some acknowledgement at that time that

CBR = intra-domain analogy

Late 1980s, a French group of researchers worked on analogy D. Coulon, J.-F. Boivieux, L. Bourrelly, L. Bruneau, E. Chouraqui, J.-M. David, C. R. Lu, M. Py, J. Savelli, B. Séroussi, C. Vrain, *Le raisonnement par analogie en intelligence artificielle*, 1990

Among the themes discussed in this group: inter-domain analogy vs intra-domain analogy (a debate bla distinction)

(a debatable distinction)

- ▶ 1993: first French workshop on CBR (*raisonnement à partir de cas*)
- Some acknowledgement at that time that

 $CBR = intra-domain analogy \subsetneq analogy$

adaptation analogy@ICCBR

adaptation adaptation analogy@ICCBR analogy@ICCBR

adaptation adaptation adaptation analogy@ICCBR analogy@ICCBR

adaptation adaptation adaptation analogy@ICCBR analogy@ICCBR analogy@ICCBR

adaptation adaptation adaptation adaptation analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR

adaptation adaptation adaptation adaptation

adaptation

analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR

adaptation adaptation adaptation adaptation adaptation

adaptation

analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR

adaptation adaptation adaptation adaptation adaptation adaptation

adaptation

analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR

analogy@ICCBR

adaptation adaptation adaptation adaptation adaptation . adaptation . adaptation . adaptation

analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR

adaptation adaptation adaptation adaptation adaptation adaptation

analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR
CBR examined from the viewpoint of proportional analogies

► Horizontal view: x^s:x^{tgt}::y^s:y^{tgt}

Horizontal view: x^s:x^{tgt}::y^s:y^{tgt}
TA

Horizontal view: x^s:x^{tgt}::y^s:y^{tgt}
TA
Vertical view: x^s:y^s::x^{tgt}:y^{tgt}

Horizontal View: x⁵:x⁵:y⁵:y⁵:y⁵
TA
Vertical view: x⁵:y⁵::x^{tgt}:y^{tgt}
DA

	TA	DA
a:b::a:b	—	x ^s :y ^s ::x ^s :y ^s

	TA	DA
a:b::a:b	—	x ^s :y ^s ::x ^s :y ^s
a:a::b:b	x ^s :x ^s ::y ^s :y ^s	—

	ТА	DA
a:b::a:b	—	x ^s :y ^s ::x ^s :y ^s
a:a::b:b	x ^s :x ^s ::y ^s :y ^s	—
if $a:b::a:x$ then $x = b$	_	if $x^s : y^s :: x^s : y$ then $y = y^s$ (unicity of solution)

	ТА	DA
a:b::a:b	—	x ^s :y ^s ::x ^s :y ^s
a:a::b:b	x ^s :x ^s ::y ^s :y ^s	—
if $a:b::a:x$ then $x = b$	_	if $x^s : y^s :: x^s : y$ then $y = y^s$ (unicity of solution)
if $a:a::b:x$ then $x = b$	if $x^s : x^s : : y^s : y$ then $y = y^s$ (unicity of solution)	_

Multi-step single adaptation using similarity paths and adaptation paths

x^{tgt}

Other postulates of proportional analogies considered from a CBR viewpoint

This is your homework.

Using analogical proportions for reasoning with cases

For some applications: $\mathcal{P} = \mathcal{S}$

- ▶ For some applications: P = S
- ▶ For them, an analogical proportion on $\mathcal{P} = \mathcal{S} = \mathcal{U}$ does the job:

- ▶ For some applications: P = S
- ▶ For them, an analogical proportion on $\mathcal{P} = \mathcal{S} = \mathcal{U}$ does the job:
 - ▶ Retrieval: select the (x^s, y^s) ∈ CB such that x^s: y^s::x^{tgt}: y is solvable

- For some applications: $\mathcal{P} = \mathcal{S}$
- ▶ For them, an analogical proportion on $\mathcal{P} = \mathcal{S} = \mathcal{U}$ does the job:
 - ▶ Retrieval: select the (x^s, y^s) ∈ CB such that x^s: y^s::x^{tgt}: y is solvable
 - Solve the x^s:y^s::x^{tgt}:y equations and combine / vote

Lepage, Lieber, Mornard, Nauer, Romary, Sies, ICCBR-2020, *The French Correction: When Retrieval Is Harder to Specify than Adaptation*

 Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]
- An English example:

$$\begin{array}{ccc} \mathbf{x}^{s} & = & & \\ \mathbf{y}^{s} & = & & \\ \mathbf{x}^{\mathtt{tgt}} & = & & \\ \mathbf{y}^{\mathtt{tgt}} & = & & \end{array}$$

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]
- An English example:

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]
- An English example:

$$egin{array}{rcl} x^s &=& \mbox{Miguel would not eating his soup} \ y^s &=& \ x^{tgt} &=& \mbox{Fadi will going to Aberdeen.} \ y^{tgt} &=& \end{array}$$

Lepage, Lieber, Mornard, Nauer, Romary, Sies, ICCBR-2020, *The French Correction: When Retrieval Is Harder to Specify than Adaptation*

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]
- An English example:

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]
- An English example:

x ^s	Miguel would not eating his soup.
y ^s	Miguel would not eat his soup.
x ^{tgt}	Fadi will going to Aberdeen.
y^{tgt}	Fadi will go to Aberdeen.

Lepage, Lieber, Mornard, Nauer, Romary, Sies, ICCBR-2020, *The French Correction: When Retrieval Is Harder to Specify than Adaptation*

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]
- An English example:

▶ For this example: adaptation is simple, retrieval is harder...

Lepage, Lieber, Mornard, Nauer, Romary, Sies, ICCBR-2020, *The French Correction: When Retrieval Is Harder to Specify than Adaptation*

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]
- An English example:

- ► For this example: adaptation is simple, retrieval is harder...
- Lot of work to do to improve this application... (May be a challenge?)

Duck, Schaller, Auber, Chaussy, Henriet, Lieber, Nauer, Prade, ICCBR-2022, Analogy-based post-treatment of CNN image segmentations

x^s

Duck, Schaller, Auber, Chaussy, Henriet, Lieber, Nauer, Prade, ICCBR-2022, Analogy-based post-treatment of CNN image segmentations

Duck, Schaller, Auber, Chaussy, Henriet, Lieber, Nauer, Prade, ICCBR-2022, Analogy-based post-treatment of CNN image segmentations

Duck, Schaller, Auber, Chaussy, Henriet, Lieber, Nauer, Prade, ICCBR-2022, Analogy-based post-treatment of CNN image segmentations

For k = 1: Correcting image segmentation

Duck, Schaller, Auber, Chaussy, Henriet, Lieber, Nauer, Prade, ICCBR-2022, Analogy-based post-treatment of CNN image segmentations

Analogical extrapolation:

 $\mathbf{x}^{a}:\mathbf{x}^{b}::\mathbf{x}^{c}:\mathbf{x}^{tgt}$

Analogical extrapolation:

 $\mathbf{x}^{a}:\mathbf{x}^{b}::\mathbf{x}^{c}:\mathbf{x}^{\mathsf{tgt}}$ $\mathbf{y}^{a}:\mathbf{y}^{b}::\mathbf{y}^{c}:\mathbf{y}^{\mathsf{tgt}}$

Analogical extrapolation:

$$\mathbf{x}^{a}:\mathbf{x}^{b}::\mathbf{x}^{c}:\mathbf{x}^{\mathrm{tgt}}$$
$$\mathbf{y}^{a}:\mathbf{y}^{b}::\mathbf{y}^{c}:\mathbf{y}^{\mathrm{tgt}}$$

 \blacktriangleright Requires two analogical proportions: on ${\cal P}$ and on ${\cal S}$

Analogical extrapolation:

$$\begin{array}{c} \mathbf{x}^{a} : \mathbf{x}^{b} :: \mathbf{x}^{c} : \mathbf{x}^{\mathrm{tgt}} \\ \mathbf{y}^{a} : \mathbf{y}^{b} :: \mathbf{y}^{c} : \mathbf{y}^{\mathrm{tgt}} \end{array}$$

 \blacktriangleright Requires two analogical proportions: on ${\cal P}$ and on ${\cal S}$

▶ Retrieval: find $(x^a, y^a), (x^b, y^b), (x^c, y^c) \in CB$ such that $x^a: x^b:: x^c: x^{tgt}$

Analogical extrapolation:

$$\mathbf{x}^{a}:\mathbf{x}^{b}::\mathbf{x}^{c}:\mathbf{x}^{\mathrm{tgt}}$$
$$\mathbf{y}^{a}:\mathbf{y}^{b}::\mathbf{y}^{c}:\mathbf{y}^{\mathrm{tgt}}$$

 \blacktriangleright Requires two analogical proportions: on ${\cal P}$ and on ${\cal S}$

- ▶ Retrieval: find $(x^a, y^a), (x^b, y^b), (x^c, y^c) \in CB$ such that $x^a: x^b:: x^c: x^{tgt}$
- Adaptation: solve the equations y^a: y^b:: y^c: y
 (and combine solutions, or vote, if there are several solvable
 equations)

Analogical extrapolation:

$$\mathbf{x}^{a}:\mathbf{x}^{b}::\mathbf{x}^{c}:\mathbf{x}^{\mathrm{tgt}}$$
$$\mathbf{y}^{a}:\mathbf{y}^{b}::\mathbf{y}^{c}:\mathbf{y}^{\mathrm{tgt}}$$

 \blacktriangleright Requires two analogical proportions: on ${\cal P}$ and on ${\cal S}$

- ▶ Retrieval: find $(x^a, y^a), (x^b, y^b), (x^c, y^c) \in CB$ such that $x^a: x^b:: x^c: x^{tgt}$
- Adaptation: solve the equations y^a: y^b:: y^c: y
 (and combine solutions, or vote, if there are several solvable
 equations)
- For arithmetical analogical proportions, retrieval can be implemented efficiently thanks to an offline storage of x^b - x^a in a database.

Yves Lepage and Étienne Denoual, *Purest ever example-based machine translation: Detailed presentation and assessment*, Machine Translation, 2005

x ∈ P: sentence in an origin language (e.g. French)
 y ∈ S: sentence in a destination language (e.g. English)
 x ↔ y: x can be translated into y

Yves Lepage and Étienne Denoual, *Purest ever example-based machine translation: Detailed presentation and assessment*, Machine Translation, 2005

- x ∈ P: sentence in an origin language (e.g. French)
 y ∈ S: sentence in a destination language (e.g. English)
 x → y: x can be translated into y
- Example:

$$\begin{array}{rcl} \mathbf{x}^{a} & = & \\ \mathbf{x}^{b} & = & \\ \mathbf{x}^{c} & = & \\ \mathbf{y}^{a} & = & \\ \mathbf{y}^{b} & = & \\ \mathbf{y}^{c} & = & \\ \mathbf{y}^{tgt} & = & \end{array}$$

Yves Lepage and Étienne Denoual, *Purest ever example-based machine translation: Detailed presentation and assessment*, Machine Translation, 2005

- x ∈ P: sentence in an origin language (e.g. French)
 y ∈ S: sentence in a destination language (e.g. English)
 x → y: x can be translated into y
- Example:

$$\begin{array}{rcl} x^a & = & \\ x^b & = & \\ x^c & = & \\ x^{tgt} & = & Je \ veux \ faire \ du \ vélo. \\ y^a & = & \\ y^b & = & \\ y^c & = & \\ y^{tgt} & = & \end{array}$$

Yves Lepage and Étienne Denoual, *Purest ever example-based machine translation: Detailed presentation and assessment*, Machine Translation, 2005

 x ∈ P: sentence in an origin language (e.g. French) y ∈ S: sentence in a destination language (e.g. English) x ↔ y: x can be translated into y

Example:

 $\begin{array}{rcl} \mathbf{x}^a &=& Tu \ peux \ le \ faire \ aujourd'hui.\\ \mathbf{x}^b &=& Tu \ veux \ le \ faire.\\ \mathbf{x}^c &=& Je \ peux \ faire \ du \ vélo \ aujourd'hui.\\ \mathbf{x}^{tgt} &=& Je \ veux \ faire \ du \ vélo.\\ \mathbf{y}^a &=& \\ \mathbf{y}^b &=& \\ \mathbf{y}^{c} &=& \\ \mathbf{y}^{tgt} &=& \end{array}$

Yves Lepage and Étienne Denoual, *Purest ever example-based machine translation: Detailed presentation and assessment*, Machine Translation, 2005

 x ∈ P: sentence in an origin language (e.g. French) y ∈ S: sentence in a destination language (e.g. English) x ↔ y: x can be translated into y

Example:

- x^a = Tu peux le faire aujourd'hui.
- $\mathbf{x}^{b} = Tu$ veux le faire.
- x^c = Je peux faire du vélo aujourd'hui.
- x^{tgt} = Je veux faire du vélo.
 - y^a = You can do it today.

 $y^{tgt} =$

y^b y^c y^{tgt}

Yves Lepage and Étienne Denoual, *Purest ever example-based machine translation: Detailed presentation and assessment*, Machine Translation, 2005

x ∈ P: sentence in an origin language (e.g. French)
 y ∈ S: sentence in a destination language (e.g. English)
 x ↔ y: x can be translated into y

Example:

- x^a = Tu peux le faire aujourd'hui.
- $x^b = Tu$ veux le faire.
- x^c = Je peux faire du vélo aujourd'hui.
- $x^{tgt} = Je veux faire du vélo.$
 - $y^a = You \ can \ do \ it \ today.$

Yves Lepage and Étienne Denoual, *Purest ever example-based machine translation: Detailed presentation and assessment*, Machine Translation, 2005

Example:

- x^a = Tu peux le faire aujourd'hui.
- $\mathbf{x}^{b} = Tu$ veux le faire.
- x^c = Je peux faire du vélo aujourd'hui.
- $x^{tgt} = Je veux faire du vélo.$
 - $y^a = You \ can \ do \ it \ today.$

- $y^c = I$ can ride my bicycle today.
- $y^{tgt} = I$ want to ride my bicycle.
- [Lepage and Lieber, ICCBR-2018]: (1) recognizing this contribution as a knowledge-light CBR system (2) See how it might be improved into a knowledge-intensive CBR system

For k = 3: work with Emmanuel Nauer, Henri Prade and Gilles Richard

@ICCBR-2018 Theoretical and empirical study of approximation (k = 1), interpolation (k = 2) and extrapolation (k = 3) For k = 3: work with Emmanuel Nauer, Henri Prade and Gilles Richard

@ICCBR-2018 Theoretical and empirical study of approximation (k = 1), interpolation (k = 2) and extrapolation (k = 3)

@ICCBR-2019 Competence of pairs of cases (based on support and confidence) to improve analogical extrapolation For k = 3: work with Emmanuel Nauer, Henri Prade and Gilles Richard

@ICCBR-2018 Theoretical and empirical study of approximation (k = 1), interpolation (k = 2) and extrapolation (k = 3)
@ICCBR-2019 Competence of pairs of cases (based on support and confidence)

to improve analogical extrapolation

@ICCBR-2021 When Revision-Based Case Adaptation Meets Analogical Extrapolation

For k = 3: case-based cleaning

Éric Astier, Hugo Iopeti, Jean Lieber, Hugo Mathieu Steinbach, Ludovic Yvoz, *Case-Based Cleaning of Text Images*, ICCBR-2023

 x ∈ P: image of a French text (from 19th or 20th century) y ∈ S: parameter triple of a cleaning filter
 x → y: the cleaning of x with parameter triple y gives satisfying results

For k = 3: case-based cleaning

Éric Astier, Hugo Iopeti, Jean Lieber, Hugo Mathieu Steinbach, Ludovic Yvoz, *Case-Based Cleaning of Text Images*, ICCBR-2023

- x ∈ P: image of a French text (from 19th or 20th century) y ∈ S: parameter triple of a cleaning filter
 x ~→ y: the cleaning of x with parameter triple y gives satisfying results
- Approaches based on:
 - Approximation (k = 1)
 - Interpolation (k = 2)
 - Extrapolation (k = 3)

For k = 3: case-based cleaning

Éric Astier, Hugo Iopeti, Jean Lieber, Hugo Mathieu Steinbach, Ludovic Yvoz, *Case-Based Cleaning of Text Images*, ICCBR-2023

- x ∈ P: image of a French text (from 19th or 20th century) y ∈ S: parameter triple of a cleaning filter
 x ~→ y: the cleaning of x with parameter triple y gives satisfying results
- Approaches based on:
 - Approximation (k = 1)
 - Interpolation (k = 2)
 - Extrapolation (k = 3)
- Talk on Thursday!

Adaptation knowledge learning and analogical extrapolation

Seminal paper of M. T. Keane and K. Hanney (EWCBR-96) many contributors to AKL (I have started a list, but it is better to have an empty list then a nonempty incomplete liste)

Seminal paper of M. T. Keane and K. Hanney (EWCBR-96) many contributors to AKL (I have started a list, but it is better to have an empty list then a nonempty incomplete liste)

 The difference heuristics (term borrowed to David Leake)

- Seminal paper of M. T. Keane and K. Hanney (EWCBR-96) many contributors to AKL (I have started a list, but it is better to have an empty list then a nonempty incomplete liste)
- The difference heuristics (term borrowed to David Leake)
 - From $(x^i, y^i), (x^j, y^j)$ two different source cases:
 - $(x^i, x^j) \mapsto \Delta x^{ij}$ (in some problem difference formalism)
 - $(y^i, y^j) \mapsto \Delta y^{ij}$ (in some solution difference formalism)

- Seminal paper of M. T. Keane and K. Hanney (EWCBR-96) many contributors to AKL (I have started a list, but it is better to have an empty list then a nonempty incomplete liste)
- The difference heuristics (term borrowed to David Leake)
 - From $(x^i, y^i), (x^j, y^j)$ two different source cases:
 - $(x^i, x^j) \mapsto \Delta x^{ij}$ (in some problem difference formalism)
 - $(y^i, y^j) \mapsto \Delta y^{ij}$ (in some solution difference formalism)
 - $\blacktriangleright \mathsf{AKL}: \left\{ \left(\Delta x^{ij}, \Delta y^{ij} \right) \right\}_{ij} \mapsto \mathsf{AK}$

► For
$$\mathcal{D} = \{=1, =0, +, -\}$$

 $x^{i} = x_{1} \land \neg x_{2} \land \neg x_{3} \land x_{4}$
 $x^{j} = x_{1} \land \neg x_{2} \land x_{3} \land \neg x_{4}$

$$\begin{array}{c|c} \blacktriangleright \mbox{ For } \mathcal{D} = \{ = 1, = 0, +, - \} \\ & x^i = x_1 \land \neg x_2 \land \neg x_3 \land x_4 \\ & x^j = x_1 \land \neg x_2 \land x_3 \land \neg x_4 \\ & \Delta x^{ij} = \end{array}$$

$$\begin{array}{c|c} \blacktriangleright \mbox{ For } \mathcal{D} = \{ = 1, = 0, +, - \} \\ & x^{i} = x_{1} \land \neg x_{2} \land \neg x_{3} \land x_{4} \\ & x^{j} = x_{1} \land \neg x_{2} \land x_{3} \land \neg x_{4} \\ & \Delta x^{ij} = x_{1}^{=1} \end{array}$$

$$\begin{array}{c|c} \blacktriangleright \mbox{ For } \mathcal{D} = \{ = 1, = 0, +, - \} \\ & x^{i} = x_{1} \land \neg x_{2} \land \neg x_{3} \land x_{4} \\ & x^{j} = x_{1} \land \neg x_{2} \land x_{3} \land \neg x_{4} \\ & \Delta x^{ij} = x_{1}^{=1} \land x_{2}^{=0} \end{array}$$

$$\begin{array}{c|c} \blacktriangleright \quad \text{For } \mathcal{D} = \{\texttt{=1},\texttt{=0},\texttt{+},\texttt{-}\} \\ x^{i} &= x_{1} \quad \land \quad \neg x_{2} \quad \land \quad \neg x_{3} \quad \land \quad x_{4} \\ x^{j} &= x_{1} \quad \land \quad \neg x_{2} \quad \land \quad x_{3} \quad \land \quad \neg x_{4} \\ \Delta x^{ij} &= x_{1}^{\texttt{=1}} \quad \land \quad x_{2}^{\texttt{=0}} \quad \land \quad x_{3}^{\texttt{+}} \end{array}$$

► For
$$\mathcal{D} = \{=1, =0, +, -\}$$

 $x^{i} = x_{1} \land \neg x_{2} \land \neg x_{3} \land x_{4}$
 $x^{j} = x_{1} \land \neg x_{2} \land x_{3} \land \neg x_{4}$
 $\Delta x^{ij} = x_{1}^{=1} \land x_{2}^{=0} \land x_{3}^{+} \land x_{4}^{-}$

Generalizable to attribute-value pairs

For
$$\mathcal{D} = \{=1,=0,+,-\}$$

 $x^{i} = x_{1} \land \neg x_{2} \land \neg x_{3} \land x_{4}$
 $x^{j} = x_{1} \land \neg x_{2} \land x_{3} \land \neg x_{4}$
 $\Delta x^{ij} = x_{1}^{=1} \land x_{2}^{=0} \land x_{3}^{+} \land x_{4}^{-}$

► Applying FCI extraction program gives birth to conjunctions such as x⁺₂ ∧ x⁼⁰₃ ∧ y⁼¹₁ ∧ y⁻₂ that can be interpreted as an adaptation rule.

► For
$$\mathcal{D} = \{=1, =0, +, -\}$$

 $x^{i} = x_{1} \land \neg x_{2} \land \neg x_{3} \land x_{4}$
 $x^{j} = x_{1} \land \neg x_{2} \land x_{3} \land \neg x_{4}$
 $\Delta x^{ij} = x_{1}^{=1} \land x_{2}^{=0} \land x_{3}^{+} \land x_{4}^{-}$

- Applying FCI extraction program gives birth to conjunctions such as x⁺₂ ∧ x⁼⁰₃ ∧ y⁼¹₁ ∧ y⁻₂ that can be interpreted as an adaptation rule.

Generalizable to attribute-value pairs

► For
$$\mathcal{D} = \{=1,=0,+,-\}$$

 $x^{i} = x_{1} \land \neg x_{2} \land \neg x_{3} \land x_{4}$
 $x^{j} = x_{1} \land \neg x_{2} \land x_{3} \land \neg x_{4}$
 $\Delta x^{ij} = x_{1}^{=1} \land x_{2}^{=0} \land x_{3}^{+} \land x_{4}^{-}$

- Applying FCI extraction program gives birth to conjunctions such as x⁺₂ ∧ x⁼⁰₃ ∧ y⁼¹₁ ∧ y⁻₂ that can be interpreted as an adaptation rule.
- ► For $\mathcal{D} = \{=, +, -\}$ $x^i = x_1 \land \neg x_2 \land \neg x_3 \land x_4$ $x^j = x_1 \land \neg x_2 \land x_3 \land \neg x_4$ $\Delta x^{ij} = x_1^{-} \land x_2^{-} \land x_3^{+} \land x_4^{-}$

▶ *lazy AKL* with this $\mathcal{D} \iff$ analogical extrapolation on \mathbb{B}^n

Generalizable to attribute-value pairs

► For
$$\mathcal{D} = \{=1,=0,+,-\}$$

 $\mathbf{x}^i = \mathbf{x}_1 \land \neg \mathbf{x}_2 \land \neg \mathbf{x}_3 \land \mathbf{x}_4$
 $\mathbf{x}^j = \mathbf{x}_1 \land \neg \mathbf{x}_2 \land \mathbf{x}_3 \land \neg \mathbf{x}_4$
 $\Delta \mathbf{x}^{ij} = \mathbf{x}_1^{=1} \land \mathbf{x}_2^{=0} \land \mathbf{x}_3^{+} \land \mathbf{x}_4^{-}$

- Applying FCI extraction program gives birth to conjunctions such as x⁺₂ ∧ x⁼⁰₃ ∧ y⁼¹₁ ∧ y⁻₂ that can be interpreted as an adaptation rule.
- $\blacktriangleright \quad \mathsf{For} \ \mathcal{D} = \{\texttt{=},\texttt{+},\texttt{-}\}$

\mathbf{x}^{i}	\mathbf{x}_1	\wedge	$\neg x_2$	\wedge	$\neg x_3$	\wedge	X4
\mathbf{x}^{j}	\mathbf{x}_1	\wedge	$\neg x_2$	\wedge	x3	\wedge	$\neg x_4$
$\Delta \mathbf{x}^{ij}$	\mathbf{x}_1^{-}	\wedge	x_2^{-}	\wedge	x +	\wedge	x_4^-

lazy AKL with this D ↔ *analogical extrapolation* on Bⁿ
 Emmanuel Nauer, Jean Lieber, Mathieu d'Aquin, *Lazy Adaptation Knowledge Learning based on Frequent Closed Itemsets*, ICCBR-2023

Conclusion
Two fields of AI with

Differences of approaches, methods, vocabularies

- Differences of approaches, methods, vocabularies
- Ideas to be shared...

- Differences of approaches, methods, vocabularies
- Ideas to be shared...
- Towards ICCBR
 - = International Conference on analogy, i.e. Case-Based Reasoning?

- Differences of approaches, methods, vocabularies
- Ideas to be shared...
- Towards ICCBR
 - = International Conference on analogy, i.e. Case-Based Reasoning?
- Use of analogical proportions for CBR
 - ▶ Difficulty: a:b::c:d in the same universe \mathcal{U} whereas $x^s, x^{tgt} \in \mathcal{P}$ and $y^s, y^{tgt} \in S$

- Differences of approaches, methods, vocabularies
- Ideas to be shared...
- Towards ICCBR
 - = International Conference on analogy, i.e. Case-Based Reasoning?
- Use of analogical proportions for CBR
 - ▶ Difficulty: a:b::c:d in the same universe \mathcal{U} whereas $x^s, x^{tgt} \in \mathcal{P}$ and $y^s, y^{tgt} \in S$
 - Taken into account:

- Differences of approaches, methods, vocabularies
- Ideas to be shared...
- Towards ICCBR
 - = International Conference on analogy, i.e. Case-Based Reasoning?
- Use of analogical proportions for CBR
 - ▶ Difficulty: a:b::c:d in the same universe \mathcal{U} whereas $x^s, x^{tgt} \in \mathcal{P}$ and $y^s, y^{tgt} \in S$
 - Taken into account:
 - When $\mathcal{P} = \mathcal{S}$

- Differences of approaches, methods, vocabularies
- Ideas to be shared...
- Towards ICCBR
 - = International Conference on analogy, i.e. Case-Based Reasoning?
- Use of analogical proportions for CBR
 - ▶ Difficulty: a:b::c:d in the same universe \mathcal{U} whereas $x^s, x^{tgt} \in \mathcal{P}$ and $y^s, y^{tgt} \in S$
 - Taken into account:
 - When $\mathcal{P} = \mathcal{S}$
 - Or by analogical extrapolation

Future directions

Considering this work with a query-result model of cases

Future directions

- Considering this work with a query-result model of cases
- How could adaptation knowledge be integrated in proportional analogies?

Future directions

- Considering this work with a query-result model of cases
- How could adaptation knowledge be integrated in proportional analogies?
- How could domain knowledge be integrated in proportional analogies?

A nice drawing to finish the talk

analogy

