Case-Based Reasoning and Analogy: a Turbulent Love Story

Jean Lieber
Université de Lorraine, CNRS, Inria, LORIA, Nancy

ATA@ICCBR-2023

CBR and analogy: an RCC8 view

Overview

- Preliminaries:
- Some definitions about CBR
- Some definitions about analogy
- A subjective chronological viewpoint
- CBR examined from the viewpoint of proportional analogies
- Using analogical proportions for reasoning with cases
- Adaptation knowledge learning and analogy
- Is there a way to conclude this talk?

Preliminaries

Warning:

- To the CBR-ians: the first part is boring for you.
- To the analogists: the second part is boring for you.
- To all: please wake up after the preliminaries!
- In all generality:
a representation of a problem-solving episode
- In all generality:
a representation of a problem-solving episode
- Problem-solution model: a case is a pair (x, y) where
$\downarrow \mathrm{x} \in \mathcal{P}$
$\downarrow \mathrm{y} \in \mathcal{S}$
$\triangleright \mathrm{x} \rightsquigarrow \mathrm{y}$ where \rightsquigarrow reads "has for solution"
- In all generality:
a representation of a problem-solving episode
- Problem-solution model: a case is a pair (x, y) where
$\downarrow \mathrm{x} \in \mathcal{P}$
$\downarrow \mathrm{y} \in \mathcal{S}$
$\triangleright \mathrm{x} \rightsquigarrow \mathrm{y}$ where \rightsquigarrow reads "has for solution"
- \rightsquigarrow is usually uncompletely known by the CBR system, but known for source cases $\left(\mathrm{x}^{5}, \mathrm{y}^{5}\right) \in \mathrm{CB}$.
- In all generality:
a representation of a problem-solving episode
- Problem-solution model: a case is a pair (x, y) where
> $\mathrm{x} \in \mathcal{P}$
$\downarrow \mathrm{y} \in \mathcal{S}$
> $\mathrm{x} \rightsquigarrow \mathrm{y}$ where \rightsquigarrow reads "has for solution"
- \rightsquigarrow is usually uncompletely known by the CBR system, but known for source cases $\left(\mathrm{x}^{5}, \mathrm{y}^{5}\right) \in \mathrm{CB}$.
- There may have additional information associated with ($\mathrm{x}^{5}, \mathrm{y}^{5}$) (e.g. partial information about the reasoning process $\mathrm{x}^{s} \mapsto \mathrm{y}^{s}$).
- In all generality:
a representation of a problem-solving episode
- Problem-solution model: a case is a pair (x, y) where
$>\mathrm{x} \in \mathcal{P}$
$\downarrow \mathrm{y} \in \mathcal{S}$
$\triangleright \mathrm{x} \rightsquigarrow \mathrm{y}$ where \rightsquigarrow reads "has for solution"
\gg is usually uncompletely known by the CBR system, but known for source cases $\left(\mathrm{x}^{5}, \mathrm{y}^{5}\right) \in \mathrm{CB}$.
- There may have additional information associated with ($\mathrm{x}^{5}, \mathrm{y}^{5}$) (e.g. partial information about the reasoning process $\mathrm{x}^{5} \mapsto \mathrm{y}^{5}$).
- Query-result model: a case is an object (...)
- In all generality:
a representation of a problem-solving episode
- Problem-solution model: a case is a pair (x, y) where
$>\mathrm{x} \in \mathcal{P}$
$\downarrow \mathrm{y} \in \mathcal{S}$
$\triangleright \mathrm{x} \rightsquigarrow \mathrm{y}$ where \rightsquigarrow reads "has for solution"
\gg is usually uncompletely known by the CBR system, but known for source cases $\left(\mathrm{x}^{5}, \mathrm{y}^{5}\right) \in \mathrm{CB}$.
- There may have additional information associated with ($\mathrm{x}^{5}, \mathrm{y}^{5}$) (e.g. partial information about the reasoning process $\mathrm{x}^{5} \mapsto \mathrm{y}^{5}$).
- Query-result model: a case is an object (...)
- Target query: $Q^{\text {tgt }}$
- In all generality:
a representation of a problem-solving episode
- Problem-solution model: a case is a pair (x, y) where
$>\mathrm{x} \in \mathcal{P}$
$\downarrow \mathrm{y} \in \mathcal{S}$
> $\mathrm{x} \rightsquigarrow \mathrm{y}$ where \rightsquigarrow reads "has for solution"
\gg is usually uncompletely known by the CBR system, but known for source cases $\left(\mathrm{x}^{5}, \mathrm{y}^{5}\right) \in \mathrm{CB}$.
- There may have additional information associated with ($\mathrm{x}^{5}, \mathrm{y}^{5}$) (e.g. partial information about the reasoning process $\mathrm{x}^{5} \mapsto \mathrm{y}^{5}$).
- Query-result model: a case is an object (...)
- Target query: Q^{tgt}
- If there is an exact match of a source case to the query: DB
- In all generality:
a representation of a problem-solving episode
- Problem-solution model: a case is a pair (x, y) where
$>\mathrm{x} \in \mathcal{P}$
$\downarrow \mathrm{y} \in \mathcal{S}$
- $\mathrm{x} \rightsquigarrow \mathrm{y}$ where \rightsquigarrow reads "has for solution"
\gg is usually uncompletely known by the CBR system, but known for source cases $\left(\mathrm{x}^{5}, \mathrm{y}^{5}\right) \in \mathrm{CB}$.
- There may have additional information associated with ($\mathrm{x}^{5}, \mathrm{y}^{5}$) (e.g. partial information about the reasoning process $\mathrm{x}^{s} \mapsto \mathrm{y}^{s}$).
- Query-result model: a case is an object (...)
- Target query: Q^{tgt}
- If there is an exact match of a source case to the query: DB
- Else, requires some inexact matching and adaptation.

CBR (2/4)

The process model: 2Rs from the 4Rs

$$
\mathrm{x}^{\mathrm{tgt}}
$$

CBR (2/4)

The process model: 2Rs from the 4Rs

$$
k \times \mathrm{x}^{s} \longleftarrow \quad \text { retrieval } \mathrm{x}^{\mathrm{tgt}}
$$

CBR (2/4)

The process model: 2Rs from the 4Rs

CBR (2/4)

The process model: 2Rs from the 4 Rs

CBR (2/4)

The process model: 2Rs from the 4 Rs

CBR (3/4)

The knowledge model: 4 knowledge containers

CBR knowledge base $=\{\mathrm{CB}, \mathrm{DK}, \mathrm{AK}, \mathrm{RK}\}$

- CB: the case base

The knowledge model: 4 knowledge containers

CBR knowledge base $=\{\mathrm{CB}, \mathrm{DK}, \mathrm{AK}, \mathrm{RK}\}$

- CB: the case base
- DK: the domain knowledge (aka domain ontology)

CBR knowledge base $=\{\mathrm{CB}, \mathrm{DK}, \mathrm{AK}, \mathrm{RK}\}$

- CB: the case base
- DK: the domain knowledge (aka domain ontology)
- Given x and y , DK gives necessary conditions for " y is a solution to the problem x".

CBR knowledge base $=\{\mathrm{CB}, \mathrm{DK}, \mathrm{AK}, \mathrm{RK}\}$

- CB: the case base
> DK: the domain knowledge (aka domain ontology)
- Given x and y, DK gives necessary conditions for " y is a solution to the problem x ".
- AK: adaptation knowledge (e.g. adaptation rules)

CBR knowledge base $=\{\mathrm{CB}, \mathrm{DK}, \mathrm{AK}, \mathrm{RK}\}$

- CB: the case base
- DK: the domain knowledge (aka domain ontology)
- Given x and y , DK gives necessary conditions for " y is a solution to the problem x ".
- AK: adaptation knowledge (e.g. adaptation rules)
- RK: retrieval knowledge
(e.g. distance function or similarity measure on \mathcal{P})
- Ian Watson has raised the question Is CBR a Technology or a Methodology?
- Ian Watson has raised the question Is CBR a Technology or a Methodology?
- lan's answer: a methodology
- Ian Watson has raised the question Is CBR a Technology or a Methodology?
> lan's answer: a methodology
- But that does not imply that all studies in CBR are methodological ones.
- Ian Watson has raised the question Is CBR a Technology or a Methodology?
- lan's answer: a methodology
- But that does not imply that all studies in CBR are methodological ones.
- There are some technological studies on CBR.

Analogy in this talk

- What is meant by "analogy" in this talk?

Analogy in this talk

- What is meant by "analogy" in this talk?
- Everything that is related to reasoning with a structure " a is to b as c is to d ".

Analogy in this talk

- What is meant by "analogy" in this talk?
- Everything that is related to reasoning with a structure " a is to b as c is to d ".
- No more.

Analogy in this talk

- What is meant by "analogy" in this talk?
- Everything that is related to reasoning with a structure " a is to b as c is to d ".
- No more.
- No less.

Analogy in this talk

- What is meant by "analogy" in this talk?
- Everything that is related to reasoning with a structure " a is to b as c is to d ".
- No more.
- No less.
- In particular, analogical proportions.

Analogical proportions (1/4)

- A quaternary relation on a set \mathcal{U} denoted by $a: b:: c: d$ and satisfying some postulates.

Analogical proportions (1/4)

- A quaternary relation on a set \mathcal{U} denoted by $a: b:: c: d$ and satisfying some postulates.
- Intuition: $a: b:: c: d$ if what is similar/dissimilar from a to b is equivalent to what is similar/dissimilar from c to d

Analogical proportions (1/4)

- A quaternary relation on a set \mathcal{U} denoted by $a: b:: c: d$ and satisfying some postulates.
- Intuition: $a: b:: c: d$ if what is similar/dissimilar from a to b is equivalent to what is similar/dissimilar from c to d
$>* * * *$ postulates: the ones that seem to be universally accepted.
- *** postulates: widely accepted but under debate
** postulates: accepted by some analogists, rejected by others
- postulates: well...

Analogical proportions (1/4)

- A quaternary relation on a set \mathcal{U} denoted by $a: b:: c: d$ and satisfying some postulates.
- Intuition: $a: b:: c: d$ if what is similar/dissimilar from a to b is equivalent to what is similar/dissimilar from c to d
$>* * * *$ postulates: the ones that seem to be universally accepted.
- *** postulates: widely accepted but under debate
** postulates: accepted by some analogists, rejected by others
- * postulates: well...
\triangleright According to who?

Analogical proportions (1/4)

$>$ A quaternary relation on a set \mathcal{U} denoted by $a: b:: c: d$ and satisfying some postulates.

- Intuition: $a: b:: c: d$ if what is similar/dissimilar from a to b is equivalent to what is similar/dissimilar from c to d
$>* * * *$ postulates: the ones that seem to be universally accepted.
- *** postulates: widely accepted but under debate
** postulates: accepted by some analogists, rejected by others
- * postulates: well...
\triangleright According to who?
- According to me.

But you can disagree!

Analogical proportions (1/4)

- A quaternary relation on a set \mathcal{U} denoted by $a: b:: c: d$ and satisfying some postulates.
- Intuition: $a: b:: c: d$ if what is similar/dissimilar from a to b is equivalent to what is similar/dissimilar from c to d
$>* * * *$ postulates: the ones that seem to be universally accepted.
- *** postulates: widely accepted but under debate
** postulates: accepted by some analogists, rejected by others
- * postulates: well...
\triangleright According to who?
- According to me.

But you can disagree! (If you dare...)

Analogical proportions (2/4)

A set of non-independent postulates

$$
\begin{aligned}
& \text { **** } a: b:: a: b \\
& * * * * ~ a: a:: b: b \\
& * * * \text { If } a: b:: a: x \text { then } x=b \\
& * * * \text { If } a: a:: b: x \text { then } x=b \\
& * * * * \text { If } a: b:: c: d \text { then } c: d:: a: b \\
& * * * \text { If } a: b:: c: d \text { then } a: c:: b: d \\
& \text { *** If } a: b:: c: d \text { then } d: b:: c: a \\
& \text { ** If } a: b:: c: d \text { and } c: d:: e: f \text { then } a: b:: e: f
\end{aligned}
$$

Analogical proportions (3/4)

Analogical equations

- Given $a, b, c \in \mathcal{U}$ and a symbol y (called unknown): expression $a: b:: c: y$

Analogical proportions (3/4)

Analogical equations

- Given $a, b, c \in \mathcal{U}$ and a symbol y (called unknown): expression $a: b:: c: y$
- Solving $a: b:: c: y$: finding the set $\{d \in \mathcal{U} \mid a: b:: c: d\}$

Analogical proportions (3/4)

Analogical equations

- Given $a, b, c \in \mathcal{U}$ and a symbol y (called unknown): expression $a: b:: c: y$
- Solving $a: b:: c: y$: finding the set $\{d \in \mathcal{U} \mid a: b:: c: d\}$
- Depending on the analogical proportion, an analogical equation may have 0,1 , more than 1 solution(s).

Analogical proportions (4/4)

Examples of analogical proportions

- Arithmetical analogical proportions:

$$
a: b:: c: d \text { if } b-a=d-c
$$

(parallelogram abdc)

Analogical proportions (4/4)

Examples of analogical proportions

- Arithmetical analogical proportions:

$$
a: b:: c: d \text { if } b-a=d-c
$$

(parallelogram abdc)

- On $\mathbb{Z}, \mathbb{R}, \mathbb{R}^{n}$

Analogical proportions (4/4)

Examples of analogical proportions

- Arithmetical analogical proportions:

$$
a: b:: c: d \text { if } b-a=d-c
$$

(parallelogram abdc)

- On $\mathbb{Z}, \mathbb{R}, \mathbb{R}^{n}$
- More generally, on a commutative group ($G,+$)

Analogical proportions (4/4)

Examples of analogical proportions

- Arithmetical analogical proportions:

$$
a: b:: c: d \text { if } b-a=d-c
$$

(parallelogram abdc)

- On $\mathbb{Z}, \mathbb{R}, \mathbb{R}^{n}$
- More generally, on a commutative group ($G,+$)
- On $\mathbb{B}=\{0,1\}$ where $b-a \in\{-1,0,1\}$, on \mathbb{B}^{n}

Analogical proportions (4/4)

Examples of analogical proportions

- Arithmetical analogical proportions:

$$
a: b:: c: d \text { if } b-a=d-c
$$

> (parallelogram abdc)
> On $\mathbb{Z}, \mathbb{R}, \mathbb{R}^{n}$

- More generally, on a commutative group ($G,+$)
- On $\mathbb{B}=\{0,1\}$ where $b-a \in\{-1,0,1\}$, on \mathbb{B}^{n}
- Yves Lepage's analogy on strings

A subjective chronological viewpoint

In the 1980s (\simeq)

In parallel:

- Childhood of CBR

Ch. Riesbeck and R. G. Schank, Inside Case-Based Reasoning, 1989 (MOPs, CHEF, etc.)

In the 1980s (\simeq)

In parallel:

- Childhood of CBR

Ch. Riesbeck and R. G. Schank, Inside Case-Based Reasoning, 1989 (MOPs, CHEF, etc.)

- Planning by analogy
J. G. Carbonell 1983 (TA) and 1986 (DA)

In the 1980s (\simeq)

In parallel:

- Childhood of CBR

Ch. Riesbeck and R. G. Schank, Inside Case-Based Reasoning, 1989 (MOPs, CHEF, etc.)

- Planning by analogy
J. G. Carbonell 1983 (TA) and 1986 (DA)
- TA: transformational analogy

In the 1980s (\simeq)

In parallel:

- Childhood of CBR

Ch. Riesbeck and R. G. Schank, Inside Case-Based Reasoning, 1989 (MOPs, CHEF, etc.)

- Planning by analogy
J. G. Carbonell 1983 (TA) and 1986 (DA)
- TA: transformational analogy
- DA: derivational analogy

In the 1980s (\simeq)

In parallel:

- Childhood of CBR

Ch. Riesbeck and R. G. Schank, Inside Case-Based Reasoning, 1989 (MOPs, CHEF, etc.)

- Planning by analogy
J. G. Carbonell 1983 (TA) and 1986 (DA)
- TA: transformational analogy
- DA: derivational analogy
- PhD thesis of Manuela Veloso (defense in 1993)

In the 1980s (\simeq)

In parallel:

- Childhood of CBR

Ch. Riesbeck and R. G. Schank, Inside Case-Based Reasoning, 1989 (MOPs, CHEF, etc.)

- Planning by analogy
J. G. Carbonell 1983 (TA) and 1986 (DA)
- TA: transformational analogy
- DA: derivational analogy
- PhD thesis of Manuela Veloso (defense in 1993)
- Multiple case retrieval and adaptation

In the 1980s (\simeq)

In parallel:

- Childhood of CBR

Ch. Riesbeck and R. G. Schank, Inside Case-Based Reasoning, 1989 (MOPs, CHEF, etc.)

- Planning by analogy
J. G. Carbonell 1983 (TA) and 1986 (DA)
- TA: transformational analogy
- DA: derivational analogy
- PhD thesis of Manuela Veloso (defense in 1993)
- Multiple case retrieval and adaptation
- Footprinting the initial state
\rightarrow The similarity between x^{5} and $\mathrm{x}^{\mathrm{tgt}}$ should depend on y^{5}.

In the 1980s (\simeq)

In parallel:

- Childhood of CBR

Ch. Riesbeck and R. G. Schank, Inside Case-Based Reasoning, 1989 (MOPs, CHEF, etc.)

- Planning by analogy
J. G. Carbonell 1983 (TA) and 1986 (DA)
- TA: transformational analogy
- DA: derivational analogy
- PhD thesis of Manuela Veloso (defense in 1993)
- Multiple case retrieval and adaptation
- Footprinting the initial state
\rightarrow The similarity between x^{5} and $\mathrm{x}^{\text {tgt }}$ should depend on y^{5}.
- Shift in vocabulary: planning by analogy became case-based planning

In the 1980s (\simeq)

In parallel:

- Childhood of CBR

Ch. Riesbeck and R. G. Schank, Inside Case-Based Reasoning, 1989 (MOPs, CHEF, etc.)

- Planning by analogy
J. G. Carbonell 1983 (TA) and 1986 (DA)
- TA: transformational analogy
- DA: derivational analogy
- PhD thesis of Manuela Veloso (defense in 1993)
- Multiple case retrieval and adaptation
- Footprinting the initial state
\rightarrow The similarity between x^{5} and $\mathrm{x}^{\text {tgt }}$ should depend on y^{5}.
- Shift in vocabulary:
planning by analogy became case-based planning
- At that time, analogy $\simeq C B R$

A chauvinist slide

- Late 1980s, a French group of researchers worked on analogy D. Coulon, J.-F. Boivieux, L. Bourrelly, L. Bruneau, E. Chouraqui, J.-M. David, C. R. Lu, M. Py, J. Savelli, B. Séroussi, C. Vrain, Le raisonnement par analogie en intelligence artificielle, 1990

A chauvinist slide

- Late 1980s, a French group of researchers worked on analogy D. Coulon, J.-F. Boivieux, L. Bourrelly, L. Bruneau, E. Chouraqui, J.-M. David, C. R. Lu, M. Py, J. Savelli, B. Séroussi, C. Vrain, Le raisonnement par analogie en intelligence artificielle, 1990
- Among the themes discussed in this group: inter-domain analogy vs intra-domain analogy

A chauvinist slide

- Late 1980s, a French group of researchers worked on analogy D. Coulon, J.-F. Boivieux, L. Bourrelly, L. Bruneau, E. Chouraqui, J.-M. David, C. R. Lu, M. Py, J. Savelli, B. Séroussi, C. Vrain, Le raisonnement par analogie en intelligence artificielle, 1990
- Among the themes discussed in this group:
inter-domain analogy vs intra-domain analogy (a debatable distinction)

A chauvinist slide

- Late 1980s, a French group of researchers worked on analogy D. Coulon, J.-F. Boivieux, L. Bourrelly, L. Bruneau, E. Chouraqui, J.-M. David, C. R. Lu, M. Py, J. Savelli, B. Séroussi, C. Vrain, Le raisonnement par analogie en intelligence artificielle, 1990
- Among the themes discussed in this group:
inter-domain analogy vs intra-domain analogy (a debatable distinction)
> 1993: first French workshop on CBR (raisonnement à partir de cas)

A chauvinist slide

- Late 1980s, a French group of researchers worked on analogy D. Coulon, J.-F. Boivieux, L. Bourrelly, L. Bruneau, E. Chouraqui, J.-M. David, C. R. Lu, M. Py, J. Savelli, B. Séroussi, C. Vrain, Le raisonnement par analogie en intelligence artificielle, 1990
- Among the themes discussed in this group: inter-domain analogy vs intra-domain analogy (a debatable distinction)
> 1993: first French workshop on CBR (raisonnement à partir de cas)
- Some acknowledgement at that time that

$$
\text { CBR }=\text { intra-domain analogy }
$$

A chauvinist slide

- Late 1980s, a French group of researchers worked on analogy D. Coulon, J.-F. Boivieux, L. Bourrelly, L. Bruneau, E. Chouraqui, J.-M. David, C. R. Lu, M. Py, J. Savelli, B. Séroussi, C. Vrain, Le raisonnement par analogie en intelligence artificielle, 1990
- Among the themes discussed in this group: inter-domain analogy vs intra-domain analogy (a debatable distinction)
> 1993: first French workshop on CBR (raisonnement à partir de cas)
- Some acknowledgement at that time that

$$
\text { CBR }=\text { intra-domain analogy } \subsetneq \text { analogy }
$$

Two parallel phenomena within the ICCBR community during the 1990s (subjective view)

adaptation analogy@ICCBR

Two parallel phenomena within the ICCBR community during the 1990s (subjective view)

adaptation adaptation

analogy@ICCBR analogy@ICCBR

Two parallel phenomena within the ICCBR community during the 1990s (subjective view)

adaptation adaptation adaptation

analogy@ICCBR analogy@ICCBR analogy@ICCBR

Two parallel phenomena within the ICCBR community during the 1990s (subjective view)

adaptation adaptation adaptation
adaptation

analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR

Two parallel phenomena within the ICCBR community during the 1990s (subjective view)

adaptation adaptation adaptation adaptation
adaptation

analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR

analogy@ICCBR

Two parallel phenomena within the ICCBR community during the 1990s (subjective view)

adaptation adaptation adaptation adaptation
 adaptation

adaptation

analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR

analogy@ICCBR

analogy@ICCBR

Two parallel phenomena within the ICCBR community during the 1990s (subjective view)

adaptation adaptation adaptation adaptation
 adaptation

adaptation
adaptation

analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR

analogy@ICCBR

analogy@ICCBR
analogy@ICCBR

Two parallel phenomena within the ICCBR community during the 1990s (subjective view)

adaptation adaptation adaptation adaptation
 adaptation

adaptation
adaptation

analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR

analogy@ICCBR

analogy@ICCBR
analogy@ICCBR

Two parallel phenomena within the ICCBR community during the 1990s (subjective view)

adaptation adaptation adaptation adaptation
 adaptation

adaptation
adaptation
adaptation

analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR

analogy@ICCBR

analogy@ICCBR
analogy@ICCBR
analogyeICCBR

Two parallel phenomena within the ICCBR community during the 1990s (subjective view)

adaptation adaptation adaptation adaptation
 adaptation

adaptation
adaptation
adaptation
daypation
-

analogy@ICCBR analogy@ICCBR analogy@ICCBR analogy@ICCBR

analogy@ICCBR
analogy@ICCBR
analogy@ICCBR
analogyeicCBR
aralogniccer

CBR examined from the viewpoint of proportional analogies

If $a: b:: c: d$ then $a: c:: b: d$

If $a: b:: c: d$ then $a: c:: b: d$

- Horizontal view: $\mathrm{x}^{s}: \mathrm{x}^{\text {tgt }}:: \mathrm{y}^{s}: \mathrm{y}^{\text {tgt }}$

If $a: b:: c: d$ then $a: c:: b: d$

- Horizontal view: $\mathrm{x}^{s}: \mathrm{x}^{\text {tgt }}:: \mathrm{y}^{s}: \mathrm{y}^{\text {tgt }}$
- TA

If $a: b:: c: d$ then $a: c:: b: d$

- Horizontal view: $\mathrm{x}^{s}: \mathrm{x}^{\text {tgt }}:: \mathrm{y}^{s}: \mathrm{y}^{\text {tgt }}$
- TA
- Vertical view: $\mathrm{x}^{s}: \mathrm{y}^{s}:: \mathrm{x}^{\text {tgt }}: \mathrm{y}^{\text {tgt }}$

If $a: b:: c: d$ then $a: c:: b: d$

- Horizontal view: $\mathrm{x}^{s}: \mathrm{x}^{\text {tgt }}:: \mathrm{y}^{s}: \mathrm{y}^{\text {tgt }}$
- TA
- Vertical view: $\mathrm{x}^{s}: \mathrm{y}^{s}:: \mathrm{x}^{\text {tgt }}: \mathrm{y}^{\text {tgt }}$
- DA

Reflexivity-related postulates

	TA	DA

Reflexivity-related postulates

	TA	DA
$a: b:: a: b$	-	$\mathrm{x}^{s}: \mathrm{y}^{s}:: \mathrm{x}^{s}: \mathrm{y}^{s}$

Reflexivity-related postulates

	TA	DA
$a: b:: a: b$	-	$\mathrm{x}^{s}: \mathrm{y}^{s}:: \mathrm{x}^{s}: \mathrm{y}^{s}$
$a: a:: b: b$	$\mathrm{x}^{s}: \mathrm{x}^{s}:: \mathrm{y}^{s}: \mathrm{y}^{s}$	-

Reflexivity-related postulates

	TA	DA
$a: b:: a: b$	-	$\mathrm{x}^{s}: \mathrm{y}^{s}:: \mathrm{x}^{s}: \mathrm{y}^{s}$
$a: a:: b: b$	$\mathrm{x}^{s}: \mathrm{x}^{5}:: \mathrm{y}^{s}: \mathrm{y}^{s}$	-
if $a: b:: a: x$ then $x=b$	-	if $x^{s}: y^{s}:: x^{s}: y$ then $y=y^{s}$ (unicity of solution)

Reflexivity-related postulates

	TA	DA
$a: b:: a: b$	-	$\mathrm{x}^{s}: \mathrm{y}^{s}: \mathrm{x}^{s}: \mathrm{y}^{s}$
$a: a:: b: b$	$\mathrm{x}^{s}: \mathrm{x}^{s}:: \mathrm{y}^{s}: \mathrm{y}^{s}$	-
if $a: b:: a: x$ then $x=b$	-	if $\mathrm{x}^{s}: \mathrm{y}^{s}:: \mathrm{x}^{s}: y$ then $y=\mathrm{y}^{s}$ $($ unicity of solution)
if $a: a:: b: x$ then $x=b$	if $\mathrm{x}^{s}: \mathrm{x}^{s}:: \mathrm{y}^{s}: y$ then $y=\mathrm{y}^{s}$ (unicity of solution)	

If $a: b:: c: d$ and $c: d:: e: f$ then $a: b:: e: f$
Multi-step single adaptation using similarity paths and adaptation paths

$$
x^{t g t}
$$

If $a: b:: c: d$ and $c: d:: e: f$ then $a: b:: e: f$
Multi-step single adaptation using similarity paths and adaptation paths

$$
\mathrm{x}^{s} \mathrm{x}^{\mathrm{tgt}}
$$

If $a: b:: c: d$ and $c: d:: e: f$ then $a: b:: e: f$
Multi-step single adaptation using similarity paths and adaptation paths

$$
x^{5} \longrightarrow x^{1} \longrightarrow x^{2} \longrightarrow x^{\text {tgt }}
$$

If $a: b:: c: d$ and $c: d:: e: f$ then $a: b:: e: f$
Multi-step single adaptation using similarity paths and adaptation paths

If $a: b:: c: d$ and $c: d:: e: f$ then $a: b:: e: f$
Multi-step single adaptation using similarity paths and adaptation paths

If $a: b:: c: d$ and $c: d:: e: f$ then $a: b:: e: f$
Multi-step single adaptation using similarity paths and adaptation paths

If $a: b:: c: d$ and $c: d:: e: f$ then $a: b:: e: f$
Multi-step single adaptation using similarity paths and adaptation paths

Other postulates of proportional analogies considered from a CBR viewpoint

This is your homework.

Using analogical proportions for reasoning with cases

For $k=1$: principle

- For some applications: $\mathcal{P}=\mathcal{S}$

For $k=1$: principle

- For some applications: $\mathcal{P}=\mathcal{S}$
- For them, an analogical proportion on $\mathcal{P}=\mathcal{S}=\mathcal{U}$ does the job:

For $k=1$: principle

- For some applications: $\mathcal{P}=\mathcal{S}$
- For them, an analogical proportion on $\mathcal{P}=\mathcal{S}=\mathcal{U}$ does the job:

Retrieval: select the $\left(\mathrm{x}^{5}, \mathrm{y}^{5}\right) \in \mathrm{CB}$ such that $\mathrm{x}^{5}: \mathrm{y}^{5}:: \mathrm{x}^{\mathrm{tgt}}: y$ is solvable

For $k=1$: principle

- For some applications: $\mathcal{P}=\mathcal{S}$
- For them, an analogical proportion on $\mathcal{P}=\mathcal{S}=\mathcal{U}$ does the job:

R Retrieval: select the $\left(\mathrm{x}^{5}, \mathrm{y}^{5}\right) \in \mathrm{CB}$ such that $\mathrm{x}^{5}: \mathrm{y}^{5}:: \mathrm{x}^{\text {tgt }}: y$ is solvable

- Solve the $\mathrm{x}^{5}: \mathrm{y}^{\text {s }}:: \mathrm{x}^{\text {tgt }}: y$ equations and combine / vote

For $k=1$: TFC

Lepage, Lieber, Mornard, Nauer, Romary, Sies, ICCBR-2020, The French Correction: When Retrieval Is Harder to Specify than Adaptation

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]

For $k=1$: TFC

Lepage, Lieber, Mornard, Nauer, Romary, Sies, ICCBR-2020, The French Correction: When Retrieval Is Harder to Specify than Adaptation

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]
- An English example:

$$
\begin{aligned}
\mathrm{x}^{\mathrm{s}} & = \\
\mathrm{y}^{\mathrm{s}} & = \\
\mathrm{x}^{\mathrm{gt}} & = \\
\mathrm{y}^{\mathrm{tgt}} & =
\end{aligned}
$$

For $k=1$: TFC

Lepage, Lieber, Mornard, Nauer, Romary, Sies, ICCBR-2020, The French Correction: When Retrieval Is Harder to Specify than Adaptation

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]
- An English example:

$$
\begin{aligned}
\mathrm{x}^{s} & = \\
\mathrm{y}^{s} & = \\
\mathrm{x}^{\mathrm{tgt}} & =\text { Fadi will going to Aberdeen. } \\
\mathrm{y}^{\mathrm{tgt}} & =
\end{aligned}
$$

For $k=1$: TFC

Lepage, Lieber, Mornard, Nauer, Romary, Sies, ICCBR-2020, The French Correction: When Retrieval Is Harder to Specify than Adaptation

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]
- An English example:

$$
\begin{aligned}
\mathrm{x}^{s} & =\text { Miguel would not eating his soup. } \\
\mathrm{y}^{s} & = \\
\mathrm{x}^{\mathrm{tgt}} & =\text { Fadi will going to Aberdeen. } \\
\mathrm{y}^{\mathrm{tgt}} & =
\end{aligned}
$$

For $k=1$: TFC

Lepage, Lieber, Mornard, Nauer, Romary, Sies, ICCBR-2020, The French Correction: When Retrieval Is Harder to Specify than Adaptation

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]
- An English example:

$$
\begin{aligned}
\mathrm{x}^{s} & =\text { Miguel would not eating his soup. } \\
\mathrm{y}^{\mathrm{s}} & =\text { Miguel would not eat his soup. } \\
\mathrm{x}^{\mathrm{tgt}} & =\text { Fadi will going to Aberdeen. } \\
\mathrm{y}^{\mathrm{tgt}} & =
\end{aligned}
$$

For $k=1$: TFC

Lepage, Lieber, Mornard, Nauer, Romary, Sies, ICCBR-2020, The French Correction: When Retrieval Is Harder to Specify than Adaptation

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]
- An English example:

$$
\begin{aligned}
\mathrm{x}^{\mathrm{s}} & =\text { Miguel would not eating his soup. } \\
\mathrm{y}^{\mathrm{s}} & =\text { Miguel would not eat his soup. } \\
\mathrm{x}^{\mathrm{tgt}} & =\text { Fadi will going to Aberdeen. } \\
\mathrm{y}^{\mathrm{tgt}} & =\text { Fadi will go to Aberdeen. }
\end{aligned}
$$

For $k=1$: TFC

Lepage, Lieber, Mornard, Nauer, Romary, Sies, ICCBR-2020, The French Correction: When Retrieval Is Harder to Specify than Adaptation

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]
- An English example:

$$
\begin{aligned}
\mathrm{x}^{s} & =\text { Miguel would not eating his soup. } \\
\mathrm{y}^{\mathrm{s}} & =\text { Miguel would not eat his soup. } \\
\mathrm{x}^{\mathrm{tgt}} & =\text { Fadi will going to Aberdeen. } \\
\mathrm{y}^{\mathrm{tgt}} & =\text { Fadi will go to Aberdeen. }
\end{aligned}
$$

- For this example: adaptation is simple, retrieval is harder...

For $k=1$: TFC

Lepage, Lieber, Mornard, Nauer, Romary, Sies, ICCBR-2020, The French Correction: When Retrieval Is Harder to Specify than Adaptation

- Using the analogical proportion (= proportional analogy?) of Yves [Lepage, Denoual, 2005]
- An English example:

$$
\begin{aligned}
\mathrm{x}^{s} & =\text { Miguel would not eating his soup. } \\
\mathrm{y}^{\mathrm{s}} & =\text { Miguel would not eat his soup. } \\
\mathrm{x}^{\mathrm{gt}} & =\text { Fadi will going to Aberdeen. } \\
\mathrm{y}^{\mathrm{tgt}} & =\text { Fadi will go to Aberdeen. }
\end{aligned}
$$

- For this example: adaptation is simple, retrieval is harder...
- Lot of work to do to improve this application... (May be a challenge?)

For $k=1$: Correcting image segmentation

Duck, Schaller, Auber, Chaussy, Henriet, Lieber, Nauer, Prade, ICCBR-2022, Analogy-based post-treatment of CNN image segmentations

For $k=1$: Correcting image segmentation

Duck, Schaller, Auber, Chaussy, Henriet, Lieber, Nauer, Prade, ICCBR-2022, Analogy-based post-treatment of CNN image segmentations

For $k=1$: Correcting image segmentation

Duck, Schaller, Auber, Chaussy, Henriet, Lieber, Nauer, Prade, ICCBR-2022, Analogy-based post-treatment of CNN image segmentations

For $k=1$: Correcting image segmentation
Duck, Schaller, Auber, Chaussy, Henriet, Lieber, Nauer, Prade, ICCBR-2022, Analogy-based post-treatment of CNN image segmentations

For $k=1$: Correcting image segmentation
Duck, Schaller, Auber, Chaussy, Henriet, Lieber, Nauer, Prade, ICCBR-2022, Analogy-based post-treatment of CNN image segmentations

For $k=3$: principle

- Analogical extrapolation:

$$
\mathrm{x}^{a}: \mathrm{x}^{b}:: \mathrm{x}^{c}: \mathrm{x}^{\mathrm{tgt}}
$$

For $k=3$: principle

- Analogical extrapolation:

$$
\frac{\mathrm{x}^{a}: \mathrm{x}^{b}:: \mathrm{x}^{c}: \mathrm{x}^{\mathrm{tgt}}}{\mathrm{y}^{a}: \mathrm{y}^{b}:: \mathrm{y}^{c}: \mathrm{y}^{\mathrm{tgt}}}
$$

For $k=3$: principle

- Analogical extrapolation:

$$
\frac{x^{a}: x^{b}:: x^{c}: x^{\mathrm{tgt}}}{\mathrm{y}^{a}: \mathrm{y}^{b}:: \mathrm{y}^{c}: \mathrm{y}^{\mathrm{tgt}}}
$$

Requires two analogical proportions: on \mathcal{P} and on \mathcal{S}

For $k=3$: principle

- Analogical extrapolation:

$$
\frac{x^{a}: x^{b}:: x^{c}: x^{\mathrm{tgt}}}{\mathrm{y}^{a}: \mathrm{y}^{b}:: \mathrm{y}^{c}: \mathrm{y}^{\mathrm{tgt}}}
$$

- Requires two analogical proportions: on \mathcal{P} and on \mathcal{S}
- Retrieval: find $\left(\mathrm{x}^{a}, \mathrm{y}^{a}\right),\left(\mathrm{x}^{b}, \mathrm{y}^{b}\right),\left(\mathrm{x}^{c}, \mathrm{y}^{c}\right) \in \mathrm{CB}$ such that $\mathrm{x}^{a}: \mathrm{x}^{b}:: \mathrm{x}^{c}: \mathrm{x}^{\mathrm{tg} \mathrm{t}}$

For $k=3$: principle

- Analogical extrapolation:

- Requires two analogical proportions: on \mathcal{P} and on \mathcal{S}
- Retrieval: find $\left(\mathrm{x}^{a}, \mathrm{y}^{a}\right),\left(\mathrm{x}^{b}, \mathrm{y}^{b}\right),\left(\mathrm{x}^{c}, \mathrm{y}^{c}\right) \in \mathrm{CB}$ such that $\mathrm{x}^{a}: \mathrm{x}^{b}:: \mathrm{x}^{c}: \mathrm{x}^{\mathrm{tgt}}$
- Adaptation: solve the equations $\mathrm{y}^{a}: \mathrm{y}^{b}:: \mathrm{y}^{c}: y$ (and combine solutions, or vote, if there are several solvable equations)

For $k=3$: principle

- Analogical extrapolation:

- Requires two analogical proportions: on \mathcal{P} and on \mathcal{S}
- Retrieval: find $\left(\mathrm{x}^{a}, \mathrm{y}^{a}\right),\left(\mathrm{x}^{b}, \mathrm{y}^{b}\right),\left(\mathrm{x}^{c}, \mathrm{y}^{c}\right) \in \mathrm{CB}$ such that $x^{a}: x^{b}:: x^{c}: x^{\text {tgt }}$
- Adaptation: solve the equations $\mathrm{y}^{a}: \mathrm{y}^{b}:: \mathrm{y}^{c}: y$ (and combine solutions, or vote, if there are several solvable equations)
- For arithmetical analogical proportions, retrieval can be implemented efficiently thanks to an offline storage of $x^{b}-x^{a}$ in a database.

For $k=3$: case-based translation in 2005

Yves Lepage and Étienne Denoual, Purest ever example-based machine translation: Detailed presentation and assessment, Machine Translation, 2005
$>\mathrm{x} \in \mathcal{P}$: sentence in an origin language (e.g. French)
$\mathrm{y} \in \mathcal{S}:$ sentence in a destination language (e.g. English)
$\mathrm{x} \rightsquigarrow \mathrm{y}: \mathrm{x}$ can be translated into y

For $k=3$: case-based translation in 2005

Yves Lepage and Étienne Denoual, Purest ever example-based machine translation: Detailed presentation and assessment, Machine Translation, 2005
$>\mathrm{x} \in \mathcal{P}$: sentence in an origin language (e.g. French)
$\mathrm{y} \in \mathcal{S}$: sentence in a destination language (e.g. English)
$\mathrm{x} \rightsquigarrow \mathrm{y}: \mathrm{x}$ can be translated into y
$>$ Example:

$$
\begin{aligned}
\mathrm{x}^{a} & = \\
\mathrm{x}^{b} & = \\
\mathrm{x}^{c} & = \\
\mathrm{x}^{\mathrm{tgt}} & = \\
\mathrm{y}^{a} & = \\
\mathrm{y}^{b} & = \\
\mathrm{y}^{c} & = \\
\mathrm{y}^{\mathrm{tgt}} & =
\end{aligned}
$$

For $k=3$: case-based translation in 2005

Yves Lepage and Étienne Denoual, Purest ever example-based machine translation: Detailed presentation and assessment, Machine Translation, 2005
$>\mathrm{x} \in \mathcal{P}$: sentence in an origin language (e.g. French)
$\mathrm{y} \in \mathcal{S}$: sentence in a destination language (e.g. English)
$\mathrm{x} \rightsquigarrow \mathrm{y}: \mathrm{x}$ can be translated into y

- Example:

$$
\begin{aligned}
\mathrm{x}^{a} & = \\
\mathrm{x}^{b} & = \\
\mathrm{x}^{c} & = \\
\mathrm{x}^{\mathrm{tgt}} & =\text { Je veux faire du vélo. } \\
\mathrm{y}^{\mathrm{a}} & = \\
\mathrm{y}^{b} & = \\
\mathrm{y}^{\mathrm{c}} & = \\
\mathrm{y}^{\mathrm{tgt}} & =
\end{aligned}
$$

For $k=3$: case-based translation in 2005

Yves Lepage and Étienne Denoual, Purest ever example-based machine translation: Detailed presentation and assessment, Machine Translation, 2005
$>\mathrm{x} \in \mathcal{P}$: sentence in an origin language (e.g. French) $\mathrm{y} \in \mathcal{S}$: sentence in a destination language (e.g. English) $\mathrm{x} \rightsquigarrow \mathrm{y}: \mathrm{x}$ can be translated into y

- Example:

$$
\begin{aligned}
\mathrm{x}^{a} & =\text { Tu peux le faire aujourd'hui. } \\
\mathrm{x}^{b} & =\text { Tu veux le faire. } \\
\mathrm{x}^{\mathrm{c}} & =\text { Je peux faire du vélo aujourd'hui. } \\
\mathrm{x}^{\mathrm{tgt}} & =\text { Je veux faire du vélo. } \\
\mathrm{y}^{a} & = \\
\mathrm{y}^{b} & = \\
\mathrm{y}^{\mathrm{c}} & = \\
\mathrm{y}^{\mathrm{tgt}} & =
\end{aligned}
$$

For $k=3$: case-based translation in 2005

Yves Lepage and Étienne Denoual, Purest ever example-based machine translation: Detailed presentation and assessment, Machine Translation, 2005
$>\mathrm{x} \in \mathcal{P}$: sentence in an origin language (e.g. French) $\mathrm{y} \in \mathcal{S}$: sentence in a destination language (e.g. English) $\mathrm{x} \rightsquigarrow \mathrm{y}: \mathrm{x}$ can be translated into y
$>$ Example:

$$
\begin{aligned}
\mathrm{x}^{a} & =\text { Tu peux le faire aujourd'hui. } \\
\mathrm{x}^{b} & =\text { Tu veux le faire. } \\
\mathrm{x}^{c} & =\text { Je peux faire du vélo aujourd'hui. } \\
\mathrm{x}^{\mathrm{tgt}} & =\text { Je veux faire du vélo. } \\
\mathrm{y}^{a} & =\text { You can do it today. } \\
\mathrm{y}^{b} & =\text { You want to do it. } \\
\mathrm{y}^{c} & =\text { I can ride my bicycle today. } \\
\mathrm{y}^{\mathrm{tgt}} & =
\end{aligned}
$$

For $k=3$: case-based translation in 2005

Yves Lepage and Étienne Denoual, Purest ever example-based machine translation: Detailed presentation and assessment, Machine Translation, 2005
$>\mathrm{x} \in \mathcal{P}$: sentence in an origin language (e.g. French) $\mathrm{y} \in \mathcal{S}$: sentence in a destination language (e.g. English) $\mathrm{x} \rightsquigarrow \mathrm{y}: \mathrm{x}$ can be translated into y
$>$ Example:

$$
\begin{aligned}
\mathrm{x}^{a} & =\text { Tu peux le faire aujourd'hui. } \\
\mathrm{x}^{b} & =\text { Tu veux le faire. } \\
\mathrm{x}^{c} & =\text { Je peux faire du vélo aujourd'hui. } \\
\mathrm{x}^{\mathrm{tgt}} & =\text { Je veux faire du vélo. } \\
\mathrm{y}^{a} & =\text { You can do it today. } \\
\mathrm{y}^{b} & =\text { You want to do it. } \\
\mathrm{y}^{c} & =\text { I can ride my bicycle today. } \\
\mathrm{y}^{\mathrm{tgt}} & =\text { I want to ride my bicycle. }
\end{aligned}
$$

For $k=3$: case-based translation in 2005

Yves Lepage and Étienne Denoual, Purest ever example-based machine translation: Detailed presentation and assessment, Machine Translation, 2005
$>\mathrm{x} \in \mathcal{P}$: sentence in an origin language (e.g. French)
$\mathrm{y} \in \mathcal{S}$: sentence in a destination language (e.g. English)
$\mathrm{x} \rightsquigarrow \mathrm{y}: \mathrm{x}$ can be translated into y
$>$ Example:

$$
\begin{aligned}
\mathrm{x}^{a} & =\text { Tu peux le faire aujourd'hui. } \\
\mathrm{x}^{b} & =\text { Tu veux le faire. } \\
\mathrm{x}^{c} & =\text { Je peux faire du vélo aujourd'hui. } \\
\mathrm{x}^{\mathrm{tgt}} & =\text { Je veux faire du vélo. } \\
\mathrm{y}^{a} & =\text { You can do it today. } \\
\mathrm{y}^{b} & =\text { You want to do it. } \\
\mathrm{y}^{c} & =\text { I can ride my bicycle today. } \\
\mathrm{y}^{\mathrm{tgt}} & =\text { I want to ride my bicycle. }
\end{aligned}
$$

- [Lepage and Lieber, ICCBR-2018]: (1) recognizing this contribution as a knowledge-light CBR system (2) See how it might be improved into a knowledge-intensive CBR system

For $k=3$: work with Emmanuel Nauer, Henri Prade and

 Gilles Richard@ICCBR-2018 Theoretical and empirical study of approximation $(k=1)$, interpolation $(k=2)$ and extrapolation $(k=3)$

For $k=3$: work with Emmanuel Nauer, Henri Prade and Gilles Richard

@ICCBR-2018 Theoretical and empirical study of approximation $(k=1)$, interpolation $(k=2)$ and extrapolation ($k=3$)
©ICCBR-2019 Competence of pairs of cases (based on support and confidence)
to improve analogical extrapolation

For $k=3$: work with Emmanuel Nauer, Henri Prade and Gilles Richard

@ICCBR-2018 Theoretical and empirical study of approximation $(k=1)$, interpolation $(k=2)$ and extrapolation ($k=3$)
©ICCBR-2019 Competence of pairs of cases (based on support and confidence)
to improve analogical extrapolation
@ICCBR-2021 When Revision-Based Case Adaptation Meets
Analogical Extrapolation

For $k=3$: case-based cleaning
 Éric Astier, Hugo lopeti, Jean Lieber, Hugo Mathieu Steinbach, Ludovic Yvoz, Case-Based Cleaning of Text Images, ICCBR-2023

$>\mathrm{x} \in \mathcal{P}$: image of a French text (from 19th or 20 th century) $\mathrm{y} \in \mathcal{S}$: parameter triple of a cleaning filter $\mathrm{x} \rightsquigarrow \mathrm{y}$: the cleaning of x with parameter triple y gives satisfying results

For $k=3$: case-based cleaning
 Éric Astier, Hugo lopeti, Jean Lieber, Hugo Mathieu Steinbach, Ludovic Yvoz, Case-Based Cleaning of Text Images, ICCBR-2023

$>\mathrm{x} \in \mathcal{P}$: image of a French text (from 19th or 20th century) $\mathrm{y} \in \mathcal{S}$: parameter triple of a cleaning filter $\mathrm{x} \rightsquigarrow \mathrm{y}$: the cleaning of x with parameter triple y gives satisfying results

- Approaches based on:
- Approximation $(k=1)$
- Interpolation $(k=2)$
- Extrapolation $(k=3)$

For $k=3$: case-based cleaning
 Éric Astier, Hugo lopeti, Jean Lieber, Hugo Mathieu Steinbach, Ludovic Yvoz, Case-Based Cleaning of Text Images, ICCBR-2023

$>\mathrm{x} \in \mathcal{P}$: image of a French text (from 19th or 20th century) $\mathrm{y} \in \mathcal{S}$: parameter triple of a cleaning filter $\mathrm{x} \rightsquigarrow \mathrm{y}$: the cleaning of x with parameter triple y gives satisfying results

- Approaches based on:
- Approximation $(k=1)$
- Interpolation $(k=2)$
- Extrapolation $(k=3)$
- Talk on Thursday!

Adaptation knowledge learning and analogical extrapolation

Adaptation Knowledge Learning (AKL)

- Seminal paper of M. T. Keane and K. Hanney (EWCBR-96) many contributors to AKL (I have started a list, but it is better to have an empty list then a nonempty incomplete liste)

Adaptation Knowledge Learning (AKL)

- Seminal paper of M. T. Keane and K. Hanney (EWCBR-96) many contributors to AKL (I have started a list, but it is better to have an empty list then a nonempty incomplete liste)
- The difference heuristics (term borrowed to David Leake)

Adaptation Knowledge Learning (AKL)

- Seminal paper of M. T. Keane and K. Hanney (EWCBR-96) many contributors to AKL (I have started a list, but it is better to have an empty list then a nonempty incomplete liste)
- The difference heuristics (term borrowed to David Leake)
- From $\left(\mathrm{x}^{i}, \mathrm{y}^{i}\right),\left(\mathrm{x}^{j}, \mathrm{y}^{j}\right)$ two different source cases:
- $\left(\mathrm{x}^{i}, \mathrm{x}^{j}\right) \mapsto \Delta \mathrm{x}^{j j}$ (in some problem difference formalism)
$\downarrow\left(\mathrm{y}^{i}, \mathrm{y}^{j}\right) \mapsto \Delta \mathrm{y}^{j j}$ (in some solution difference formalism)

Adaptation Knowledge Learning (AKL)

- Seminal paper of M. T. Keane and K. Hanney (EWCBR-96) many contributors to AKL (I have started a list, but it is better to have an empty list then a nonempty incomplete liste)
- The difference heuristics (term borrowed to David Leake)
- From $\left(\mathrm{x}^{i}, \mathrm{y}^{i}\right),\left(\mathrm{x}^{j}, \mathrm{y}^{j}\right)$ two different source cases:
- $\left(\mathrm{x}^{i}, \mathrm{x}^{j}\right) \mapsto \Delta \mathrm{x}^{j j}$ (in some problem difference formalism)
$\nabla\left(\mathrm{y}^{i}, \mathrm{y}^{j}\right) \mapsto \Delta \mathrm{y}^{j j}$ (in some solution difference formalism)
$-\operatorname{AKL}:\left\{\left(\Delta \mathrm{x}^{i j}, \Delta \mathrm{y}^{i j}\right)\right\}_{i j} \mapsto \mathrm{AK}$

AKL with Boolean tuple representation of cases

Generalizable to attribute-value pairs
\rightarrow For $\mathcal{D}=\{=1,=0,+,-\}$

$$
\begin{aligned}
& \mathrm{x}^{i}=\mathrm{x}_{1} \wedge \neg \neg \mathrm{x}_{2} \wedge \mathrm{x}_{3} \wedge \\
& \mathrm{x}^{j}=\mathrm{x}_{1} \wedge \mathrm{x}_{4} \\
& \neg \mathrm{x}_{2} \\
& \wedge
\end{aligned} \mathrm{x}_{3} \wedge \stackrel{\mathrm{x}_{4}}{ }
$$

AKL with Boolean tuple representation of cases

Generalizable to attribute-value pairs
\rightarrow For $\mathcal{D}=\{=1,=0,+,-\}$

$$
\begin{aligned}
\mathrm{x}^{i} & =\mathrm{x}_{1} \wedge \\
\wedge & \neg \mathrm{x}_{2} \\
\wedge & \neg \mathrm{x}_{3} \\
\mathrm{x}^{j} & \wedge \\
\mathrm{x}^{i j} & =\mathrm{x}_{1}
\end{aligned} \mathrm{x}_{4}
$$

AKL with Boolean tuple representation of cases

Generalizable to attribute-value pairs
\rightarrow For $\mathcal{D}=\{=1,=0,+,-\}$

$$
\begin{aligned}
\mathrm{x}^{i} & =\mathrm{x}_{1} \wedge \\
\mathrm{x}_{2} & \wedge \\
\mathrm{x}_{3} & \wedge \\
\mathrm{x}^{j} & =\mathrm{x}_{4} \\
\Delta \mathrm{x}_{1} & \wedge \\
& \mathrm{x}_{1}=1
\end{aligned}
$$

AKL with Boolean tuple representation of cases

Generalizable to attribute-value pairs
\rightarrow For $\mathcal{D}=\{=1,=0,+,-\}$

$$
\begin{aligned}
\mathrm{x}^{i} & =\mathrm{x}_{1} \wedge \neg \neg \mathrm{x}_{2} \wedge \\
\mathrm{x}_{3} & \wedge \\
\mathrm{x}^{j} & =\mathrm{x}_{4} \\
\Delta \mathrm{x}_{1} & \wedge \\
\mathrm{x} & =\mathrm{x}_{2} \wedge \mathrm{x}_{1} 1 \\
\mathrm{x}_{3} & \wedge \\
=0 & \neg \mathrm{x}_{4} \\
&
\end{aligned}
$$

AKL with Boolean tuple representation of cases

Generalizable to attribute-value pairs
\rightarrow For $\mathcal{D}=\{=1,=0,+,-\}$

$$
\begin{aligned}
& \mathrm{x}^{i}=\mathrm{x}_{1} \wedge \\
& \mathrm{x}^{j} \wedge \mathrm{x}_{2} \\
& \wedge \neg \mathrm{x}_{3} \\
& \mathrm{x}_{1} \wedge \\
& \neg \mathrm{x}_{2} \wedge \\
& \mathrm{x}_{3} \wedge \\
& \mathrm{x}_{4} \\
& \Delta \mathrm{x}^{i j}=\mathrm{x}_{1}^{=1} \wedge \mathrm{x}_{2}=0 \\
& \mathrm{x}_{3}^{+}
\end{aligned}
$$

AKL with Boolean tuple representation of cases

Generalizable to attribute-value pairs
\rightarrow For $\mathcal{D}=\{=1,=0,+,-\}$

$$
\begin{aligned}
& \mathrm{x}^{i}=\mathrm{x}_{1} \wedge \\
& \mathrm{x}_{2} \wedge \\
& \mathrm{x}_{3} \wedge \\
& \mathrm{x}_{3}=\mathrm{x}_{4} \\
& \Delta \mathrm{x}^{i j}=\mathrm{x}_{1}^{=1} \wedge \mathrm{x}_{2} \wedge \\
& \mathrm{x}_{2} \wedge \\
& \mathrm{x}_{3} \wedge \\
& \mathrm{x}_{3}^{+} \wedge \mathrm{x}_{4} \\
& \mathrm{x}_{4}^{-}
\end{aligned}
$$

AKL with Boolean tuple representation of cases

Generalizable to attribute-value pairs
\rightarrow For $\mathcal{D}=\{=1,=0,+,-\}$

$$
\begin{aligned}
& \mathrm{x}^{i}=\mathrm{x}_{1} \wedge \\
& \mathrm{x}^{j} \neg \mathrm{x}_{2} \\
& \wedge \neg \mathrm{x}_{3} \\
& \wedge \mathrm{x}_{4} \\
& \mathrm{x}^{i} \mathrm{x}_{1} \wedge \\
& \mathrm{x} \neg \mathrm{x}_{2} \\
& \wedge \mathrm{x}_{3} \\
& \wedge \wedge \\
& \mathrm{x}^{i j} \mathrm{x}_{4}=1 \\
& \mathrm{x}_{2} \wedge \\
& \mathrm{x}_{3}^{+} \wedge \\
& \mathrm{x}_{4}^{-}
\end{aligned}
$$

- Applying FCl extraction program gives birth to conjunctions such as $x_{2}^{+} \wedge x_{3}^{=0} \wedge y_{1}^{=1} \wedge y_{2}^{-}$that can be interpreted as an adaptation rule.

AKL with Boolean tuple representation of cases

Generalizable to attribute-value pairs
\rightarrow For $\mathcal{D}=\{=1,=0,+,-\}$

$$
\begin{array}{rllllll}
\mathrm{x}^{i} & =\mathrm{x}_{1} & \wedge & \neg \mathrm{x}_{2} & \wedge & \neg \mathrm{x}_{3} & \wedge \\
\mathrm{x}_{4} \\
\mathrm{x}^{j} & =\mathrm{x}_{1} & \wedge & \neg \mathrm{x}_{2} & \wedge & \mathrm{x}_{3} & \wedge \\
\neg \mathrm{x}_{4} \\
\Delta \mathrm{x}^{i j} & =\mathrm{x}_{1}^{=1} & \wedge & \mathrm{x}_{2}^{=0} & \wedge & \mathrm{x}_{3}^{+} & \wedge \\
\mathrm{x}_{4}^{-}
\end{array}
$$

- Applying FCl extraction program gives birth to conjunctions such as $x_{2}^{+} \wedge x_{3}^{=0} \wedge y_{1}^{=1} \wedge y_{2}^{-}$that can be interpreted as an adaptation rule.
- For $\mathcal{D}=\{=,+,-\}$

$$
\begin{aligned}
& \mathrm{x}^{i}=\mathrm{x}_{1} \wedge \mathrm{x}_{2} \wedge \\
& \mathrm{x}^{j} \neg \mathrm{x}_{3} \\
& \wedge \mathrm{x}_{4} \\
& \Delta \mathrm{x}_{1} \mathrm{ij}=\mathrm{x}_{1}^{=} \wedge \\
& \hline \mathrm{x}_{2} \\
& \mathrm{x}_{2}^{=} \wedge \\
& \mathrm{x}_{3} \wedge \\
& \mathrm{x}_{3}^{+} \wedge \mathrm{x}_{4} \\
& \mathrm{x}_{4}^{-}
\end{aligned}
$$

AKL with Boolean tuple representation of cases

Generalizable to attribute-value pairs
\rightarrow For $\mathcal{D}=\{=1,=0,+,-\}$

$$
\begin{array}{rllllll}
\mathrm{x}^{i} & =\mathrm{x}_{1} & \wedge & \neg \mathrm{x}_{2} & \wedge & \neg \mathrm{x}_{3} & \wedge \\
\mathrm{x}_{4} \\
\mathrm{x}^{j} & =\mathrm{x}_{1} & \wedge & \neg \mathrm{x}_{2} & \wedge & \mathrm{x}_{3} & \wedge \\
\neg \mathrm{x}_{4} \\
\Delta \mathrm{x}^{i j} & =\mathrm{x}_{1}^{=1} & \wedge & \mathrm{x}_{2}^{=0} & \wedge & \mathrm{x}_{3}^{+} & \wedge \\
\mathrm{x}_{4}^{-}
\end{array}
$$

- Applying FCl extraction program gives birth to conjunctions such as $x_{2}^{+} \wedge x_{3}^{=0} \wedge y_{1}^{=1} \wedge y_{2}^{-}$that can be interpreted as an adaptation rule.
$>$ For $\mathcal{D}=\{\overline{=},+,-\}$

$$
\begin{aligned}
& \mathrm{x}^{i}=\mathrm{x}_{1} \wedge \mathrm{x}_{2} \wedge \\
& \mathrm{x}^{j} \neg \mathrm{x}_{3} \\
& \wedge \mathrm{x}_{4} \\
& \Delta \mathrm{x}_{1} \mathrm{ij}=\mathrm{x}_{1}^{=} \wedge \\
& \hline \mathrm{x}_{2} \\
& \mathrm{x}_{2}^{=} \wedge \\
& \mathrm{x}_{3} \wedge \\
& \mathrm{x}_{3}^{+} \wedge \mathrm{x}_{4} \\
& \mathrm{x}_{4}^{-}
\end{aligned}
$$

l lazy $A K L$ with this $\mathcal{D} \Longleftrightarrow$ analogical extrapolation on \mathbb{B}^{n}

AKL with Boolean tuple representation of cases

Generalizable to attribute-value pairs
\rightarrow For $\mathcal{D}=\{=1,=0,+,-\}$

$$
\begin{array}{rllllllc}
\mathrm{x}^{i} & =\mathrm{x}_{1} & \wedge & \neg \mathrm{x}_{2} & \wedge & \neg \mathrm{x}_{3} & \wedge & \mathrm{x}_{4} \\
\mathrm{x}^{j} & =\mathrm{x}_{1} & \wedge & \neg \mathrm{x}_{2} & \wedge & \mathrm{x}_{3} & \wedge & \neg \mathrm{x}_{4} \\
\Delta \mathrm{x}^{i j} & =\mathrm{x}_{1}^{=1} & \wedge & \mathrm{x}_{2}^{=0} & \wedge & \mathrm{x}_{3}^{+} & \wedge & \mathrm{x}_{4}^{-}
\end{array}
$$

$>$ Applying FCl extraction program gives birth to conjunctions such as $x_{2}^{+} \wedge x_{3}^{=0} \wedge y_{1}^{=1} \wedge y_{2}^{-}$that can be interpreted as an adaptation rule.
$>$ For $\mathcal{D}=\{\overline{=},+,-\}$

$$
\begin{array}{rlccccccc}
\mathrm{x}^{i} & =\mathrm{x}_{1} \wedge \neg \mathrm{x}_{2} \wedge & \neg \mathrm{x}_{3} & \wedge & \mathrm{x}_{4} \\
\mathrm{x}^{j} & =\mathrm{x}_{1} \wedge & \neg \mathrm{x}_{2} & \wedge & \mathrm{x}_{3} & \wedge & \neg \mathrm{x}_{4} \\
\Delta \mathrm{x}^{i j} & =\mathrm{x}_{1}^{=} \wedge & \mathrm{x}_{2}^{=} & \wedge & \mathrm{x}_{3}^{+} & \wedge & \mathrm{x}_{4}^{-}
\end{array}
$$

> lazy $A K L$ with this $\mathcal{D} \Longleftrightarrow$ analogical extrapolation on \mathbb{B}^{n}

- Emmanuel Nauer, Jean Lieber, Mathieu d'Aquin, Lazy Adaptation Knowledge Learning based on Frequent Closed Itemsets, ICCBR-2023

Conclusion

Conclusion (sort of)

- Two fields of AI with

Differences of approaches, methods, vocabularies

Conclusion (sort of)

- Two fields of AI with

D Differences of approaches, methods, vocabularies

- Ideas to be shared...

Conclusion (sort of)

- Two fields of AI with

D Differences of approaches, methods, vocabularies

- Ideas to be shared...
- Towards ICCBR
= International Conference on analogy, i.e. Case-Based Reasoning?

Conclusion (sort of)

- Two fields of AI with

D Differences of approaches, methods, vocabularies

- Ideas to be shared...
- Towards ICCBR
= International Conference on analogy, i.e. Case-Based Reasoning?
- Use of analogical proportions for CBR

D Difficulty: a:b::c:d in the same universe \mathcal{U} whereas $\mathrm{x}^{s}, \mathrm{x}^{\mathrm{tgt}} \in \mathcal{P}$ and $\mathrm{y}^{s}, \mathrm{y}^{\mathrm{tgt}} \in \mathcal{S}$

Conclusion (sort of)

- Two fields of AI with

D Differences of approaches, methods, vocabularies

- Ideas to be shared...
- Towards ICCBR
= International Conference on analogy, i.e. Case-Based Reasoning?
- Use of analogical proportions for CBR

D Difficulty: a:b::c:d in the same universe \mathcal{U} whereas $\mathrm{x}^{5}, \mathrm{x}^{\mathrm{tgt}} \in \mathcal{P}$ and $\mathrm{y}^{5}, \mathrm{y}^{\mathrm{tgt}} \in \mathcal{S}$

- Taken into account:

Conclusion (sort of)

- Two fields of AI with

D Differences of approaches, methods, vocabularies

- Ideas to be shared...
- Towards ICCBR
= International Conference on analogy, i.e. Case-Based Reasoning?
- Use of analogical proportions for CBR

D Difficulty: a:b::c:d in the same universe \mathcal{U} whereas $\mathrm{x}^{5}, \mathrm{x}^{\mathrm{tgt}} \in \mathcal{P}$ and $\mathrm{y}^{5}, \mathrm{y}^{\mathrm{tgt}} \in \mathcal{S}$

- Taken into account:
- When $\mathcal{P}=\mathcal{S}$

Conclusion (sort of)

- Two fields of AI with
- Differences of approaches, methods, vocabularies
- Ideas to be shared...
- Towards ICCBR
= International Conference on analogy, i.e. Case-Based Reasoning?
- Use of analogical proportions for CBR

D Difficulty: a:b::c:d in the same universe \mathcal{U} whereas $\mathrm{x}^{5}, \mathrm{x}^{\mathrm{tgt}} \in \mathcal{P}$ and $\mathrm{y}^{s}, \mathrm{y}^{\mathrm{tgt}} \in \mathcal{S}$

- Taken into account:
- When $\mathcal{P}=\mathcal{S}$
- Or by analogical extrapolation

Future directions

- Considering this work with a query-result model of cases

Future directions

- Considering this work with a query-result model of cases
- How could adaptation knowledge be integrated in proportional analogies?

Future directions

- Considering this work with a query-result model of cases
- How could adaptation knowledge be integrated in proportional analogies?
- How could domain knowledge be integrated in proportional analogies?

A nice drawing to finish the talk

