
Resolution of analogies between strings in the
case of several solutions

DENG, Xulin

EBMT/NLP Lab, IPS, Waseda University

October 6th, 2022

DENG XULIN 1 / 36

Introduction

Table of Contents

Introduction

Foundations

Proposal

Data Generation

Experiment

Conclusion

DENG XULIN 2 / 36

Introduction

Research topic

Our research topic is to design a non-deterministic algorithm
based on an existing deterministic algorithm (Lepage, 1998). Our
algorithm should output all solutions of a formal analogy in the
case there are several solutions:

A : B :: C : x
⇒ x = ?

DENG XULIN 3 / 36

Introduction

Baseline algorithm

The algorithm on which this research is based only outputs one
solution, even if there are several solutions for the analogy.

For example:

a : abc :: aa : x
⇒ x = ?

The answers should be abca, aabc and abac, but the program
outputs only one of the answers, aabc, because it is the first one
the algorithm finds.

DENG XULIN 4 / 36

Introduction

Baseline algorithm

The algorithm on which this research is based only outputs one
solution, even if there are several solutions for the analogy.
For example:

a : abc :: aa : x
⇒ x = ?

The answers should be abca, aabc and abac, but the program
outputs only one of the answers, aabc, because it is the first one
the algorithm finds.

DENG XULIN 4 / 36

Introduction

Background on solving analogies between strings

There are three methods:

▶ Shuffle method (Langlais et al., 2009)
Definition: D ∈ (B • C)\A

▶ Kolmogorov Complexity method (Murena et al., 2020)
Definition: D = (argminprog{prog/B = prog(A)})(C)

▶ Distance method. (Lepage, 1998)

DENG XULIN 5 / 36

Introduction

Background of the algorithm

Accuracy of the three methods on the the data set Sigmorphon
Analogy (Lepage, 2017), which is the largest data set of analogies
we have.

Number of analogies
Method

Complexity Distance Shuffle

Total 9,181,112 96.41 94.34 87.93

Table: Accuracy of the three methods. Table copied from (Murena et al.,
2020).

We suppose that the distance algorithm performs worse because
some solutions are missed.

DENG XULIN 6 / 36

Introduction

Justification for the missing solutions

The Sigmorphon Analogy dataset is a practical and large data set
built from data from the Sigmorphon campaign data. But in this
data set, the given answer does not include all solutions, i.e.,
although theoretically valid, the answers delivered by the
program are regarded as incorrect if not equal to the dataset
answer.

For example:

asked : ask :: seemed : x
⇒ x = seem or seme

The answer of this example is seem. Another answer, seme,
satisfies the definition of our algorithm. If an algorithm output
is the second answer, it will be regarded as incorrect.

DENG XULIN 7 / 36

Introduction

Justification for the missing solutions

The Sigmorphon Analogy dataset is a practical and large data set
built from data from the Sigmorphon campaign data. But in this
data set, the given answer does not include all solutions, i.e.,
although theoretically valid, the answers delivered by the
program are regarded as incorrect if not equal to the dataset
answer. For example:

asked : ask :: seemed : x
⇒ x = seem or seme

The answer of this example is seem. Another answer, seme,
satisfies the definition of our algorithm. If an algorithm output
is the second answer, it will be regarded as incorrect.

DENG XULIN 7 / 36

Introduction

Goal

To develop a non-deterministic version of the existing algorithm.
To evaluate whether we achieve our task:

▶ Do experiments checking whether all solutions are output.

DENG XULIN 8 / 36

Introduction

Contributions

▶ If there are several solutions to an analogy problem, the
existing program can output only one solution but ours can
output all of them.

▶ We generate a data set of analogies which consists of
analogies with no solution, one solution and several
solutions for evaluation.

DENG XULIN 9 / 36

Foundations

Table of Contents

Introduction

Foundations

Proposal

Data Generation

Experiment

Conclusion

DENG XULIN 10 / 36

Foundations

Edit distance: Pseudo distance

The pseudo edit distance between two strings is the minimal
number of operations required to transform one string into
another. The operations include:

▶ Insertion

▶ Deletion

▶ Substitution

Different from Levenshtein distance, the cost of insertion is 0,
and the costs of deletion and substitution of a character are 1.
One substitution can be also decomposed into one deletion and
one insertion.

DENG XULIN 11 / 36

Foundations

Baseline Algorithm

Definition of this algorithm

To solve analogy problems, the algorithm is based on a definition
of analogy, which is:

A : B :: C : D ⇒

pdist(A,B) = pdist(C ,D)
pdist(A,C) = pdist(B,D)
|A|c + |D|c = |B|c + |C |c ,∀c

(1)

|A|c is the number of occurrences of character c in string A.

DENG XULIN 12 / 36

Foundations

Example

For the analogy:

arsala : mursil :: aslama : x
⇒ x = ?

We compute the matrices and traces (marked by red) exploiting a
result presented by Ukkonen (1985):

l i s r u m a s l a m a
· · · · 1 1 a 0 · · · · ·
· · · 1 2 · r 1 1 · · · ·
· · 1 2 · · s · 1 1 · · ·
· 2 2 · · · a · · 2 1 · ·
2 3 · · · · l · · · 2 2 ·
3 · · · · · a · · · · 3 2

DENG XULIN 13 / 36

Foundations

Example

We denote the direction of the trace of the current cell in the
matrix of strings A and B as dirAB (resp. dirAC). And the
operation Copy is to copy a character into D at the beginning of
the D.

dirAB dirAC Copy move

vertical diagonal A and C
diagonal diagonal m A, B and C
diagonal diagonal i A, B and C
diagonal horizontal l C
diagonal diagonal s A, B and C
diagonal vertical A and B
horizontal diagonal u B
diagonal diagonal m A, B and C

Then we can get the answer ’muslim’.

DENG XULIN 14 / 36

Foundations

Example

We denote the direction of the trace of the current cell in the
matrix of strings A and B as dirAB (resp. dirAC). And the
operation Copy is to copy a character into D at the beginning of
the D.

dirAB dirAC Copy move

vertical diagonal A and C
diagonal diagonal m A, B and C
diagonal diagonal i A, B and C
diagonal horizontal l C
diagonal diagonal s A, B and C
diagonal vertical A and B
horizontal diagonal u B
diagonal diagonal m A, B and C

Then we can get the answer ’muslim’.

DENG XULIN 14 / 36

Proposal

Table of Contents

Introduction

Foundations

Proposal

Data Generation

Experiment

Conclusion

DENG XULIN 15 / 36

Proposal

Several solutions

If an analogy problem has at least two solutions, there should
be at least two traces in either the distance matrix between A
and B or the matrix between A and C.

The reason why the algorithm only gives one solution is that
the algorithm does not search for all the traces in the
matrices, but follows the first one it finds.

DENG XULIN 16 / 36

Proposal

Iterative version and Recursive version

▶ The existing algorithm uses an iterative way and ends as
soon as it finds one of the solutions.

▶ Our proposal is to use a recursive way to improve the
realization of the algorithm. Using a recursive way, the
algorithm not only goes through the trace it first finds
but it backtracks to the beginning of the trace and seeks
if there are other traces.

DENG XULIN 17 / 36

Proposal

Example

For example:

aa : ab :: aaa : x
⇒ x = ?

We can get 2 traces (marked by red) in matrix aa : aaa.

b a a a a b a a a a
· 0 a 0 1 · · 0 a 0 1 ·
1 · a · 0 1 1 · a · 0 1

The result will be ’aab’ and ’aba’.

DENG XULIN 18 / 36

Data Generation

Table of Contents

Introduction

Foundations

Proposal

Data Generation

Experiment

Conclusion

DENG XULIN 19 / 36

Data Generation

Data set we generate

To evaluate our proposal, we generate a data set consists of
analogy problems which have no solution, only one solution and
several solutions.

DENG XULIN 20 / 36

Data Generation

Generation of analogy with No solution

To generate an analogy A : B :: C : no solution .

▶ Randomly generate a string as A:

▶ Randomly select a character in A which will not appear in B
or C :

▶ Randomly generate strings without the character selected in
step 2 get B and C :

DENG XULIN 21 / 36

Data Generation

Generation of analogy with No solution

Example:

▶ Generate string ‘do’.

▶ Select character ‘d ’.

▶ Generate ‘two’ and ‘to’ as B and C.

Then we get analogy: do : two :: to : no solution

DENG XULIN 22 / 36

Data Generation

Generation of analogy with One solution

To generate an analogy A : B :: C : D .

▶ Randomly generate a string A and select a position to divide
A into prefix B ′ and suffix C ′.

▶ Create any number of sub-strings randomly, each without any
of the characters in A (Character constraint).

▶ Insert the sub-strings into B ′ and C ′ and get B and C ,
respecting the position constraints:
▶ no sub-string is inserted as a suffix of the prefix B ′.
▶ no sub-string is inserted as a prefix of the suffix C ′.

DENG XULIN 23 / 36

Data Generation

Generation of analogy with One solution

Example:

▶ Generate a string A = abcd. Select the position of a
character, for instance, ”c” to divide A into prefix abc and
suffix d.

▶ Create three sub-strings mn, op and xyz.

▶ Insert the sub-strings respecting the constraints. For instance,
get B = amnbopc and C = dxyz.

Then we get analogy: abcd : amnbopc :: dopmn : mnopxyz

DENG XULIN 24 / 36

Data Generation

Generation of analogy with Several solutions

Without the position constraint:

abcd : abM :: Ncd : x
⇒ x = any string in M • N

DENG XULIN 25 / 36

Data Generation

Generation of analogy with Several solutions

Without the character constraint:

abcd : ab :: cdNcMdN : x
⇒ x = any string in cdNcMdN \ cd

DENG XULIN 26 / 36

Experiment

Table of Contents

Introduction

Foundations

Proposal

Data Generation

Experiment

Conclusion

DENG XULIN 27 / 36

Experiment

Data set

We use the Sigmophon analogy data set (Lepage, 2017). This
data set contains 9,181,112 analogy problems from 10 languages.

The data generated by ourselves consists of 3,000,000 analogy
problems.

DENG XULIN 28 / 36

Experiment

Sketch of dataset

Size
Average length of
solutions

Number of solu-
tions

Zero 1,000,000 - = 0.0

One 1,000,000 5.25 = 1.0

Several 1,000,000 6.21 avg. 3.4

Sigmorphon 9,181,112 8.74 = 1.0

DENG XULIN 29 / 36

Experiment

Format

The data file contains one analogy per line:

▶ Arabic:
fanniyyayn : h. ammār :: al-fanniyyayn : al-h. ammār
kubbāya : ḡarāiz :: al-kubbāya : al-ḡarāiz

▶ Finnish:
katko : kakomaisillaan :: dekoodata : dekoodaamaisillaan
karahteerata : katko :: karahteeraamaisillaan : kakomaisillaan

▶ Spanish:
muten : mutaban :: loquee : loqueaba
muten : mutaban :: derrumbe : derrumbaba

DENG XULIN 30 / 36

Experiment

Format

▶ Analogy with no solution:
undo : walk :: do : no solution
aa : bb :: cc : no solution

▶ Analogy with one solution:
do : read :: open : reapen
see : case :: equal : caqual

▶ Analogy with several solutions:
do : d :: openopen : penopen, openpen
at : a :: tagtag : tagag, agtag

DENG XULIN 31 / 36

Experiment

Experiment results: overview

Dataset
Average
time (µs)

Precision
(%)

Recall (%) F-measure

Sig
baseline 1.40 92.0 92.2 92.0
proposed 565.00 34.8 98.5 51.2

Zero
baseline 0.17 100.0 100.0 100.0
proposed 0.26 100.0 100.0 100.0

One
baseline 0.63 97.2 81.9 88.9
proposed 1.38 99.7 100.0 99.8

Sev
baseline 1.26 96.7 30.7 46.6
proposed 1.83 99.4 100.0 99.7

Table: Assessment of baseline and proposed methods on the data sets

DENG XULIN 32 / 36

Experiment

Resluts on the Sigmorphon Analogy Dataset

Method

Language Data size Complexity Distance Shuffle Proposal
Arabic 165,113 87.18% 93.33% 81.91% 98.91%

Finnish 313,011 93.69% 92.76% 78.75% 97.13%

Georgian 3,066,273 99.35% 97.54% 88.42% 99.85%

German 730,427 98.84% 96.21% 95.42% 99.81%

Hungarian 2,912,310 95.71% 92.61% 86.02% 98.62%

Maltese 28,365 96.38% 84.72% 91.84% 98.17%

Navajo 321,473 81.21% 86.87% 78.95% 97.45%

Russian 552,423 96.41% 97.26% 95.46% 99.48%

Spanish 845,996 96.73% 96.13% 94.42% 96.18%

Turkish 245,721 89.45% 69.97% 70.06% 98.63%

Total 9,181,112 96.41% 94.34% 87.93% 98.50%

Table: Results with the methods.

DENG XULIN 33 / 36

Conclusion

Table of Contents

Introduction

Foundations

Proposal

Data Generation

Experiment

Conclusion

DENG XULIN 34 / 36

Conclusion

Conclusion

By introducing a recursive approach we could expand the scope in
solutions and could increase the performance of the Distance
algorithm on the dataset of analogy puzzles extracted from the
Sigmorphon Analogy Dataset.

DENG XULIN 35 / 36

Conclusion

Thank you for listening.

DENG XULIN 36 / 36

References

Langlais, P., Zweigenbaum, P., and Yvon, F. (2009).
Improvements in analogical learning: application to translating
multi-terms of the medical domain. In Proceedings of the 12th
Conference of the European Chapter of the Association for
Computational Linguistics (EACL 2009), pages 487–495,
Athens, Greece. Association for Computational Linguistics.

Lepage, Y. (1998). Solving analogies on words: an algorithm. In
Proceedings of the 17th International Conference on
Computational Linguistics and 36th Annual Meeting of the
Association for Computational Linguistics (COLING-ACL’98),
volume I, pages 728–735, Montréal.

Lepage, Y. (2017). Character-position arithmetic for analogy
questions between word forms. In ICCBR (Workshops), pages
23–32.

Murena, P.-A., Al-Ghossein, M., Dessalles, J.-L., Cornuéjols, A.,
et al. (2020). Solving analogies on words based on minimal
complexity transformation. In IJCAI, pages 1848–1854.

DENG XULIN 36 / 36

Ukkonen, E. (1985). Algorithms for approximate string matching.
volume 64, pages 100–118. Elsevier.

Wagner, R. A. and Fischer, M. J. (1974). The string-to-string
correction problem. volume 21, pages 168–173. ACM New York,
NY, USA.

DENG XULIN 37 / 36

Edit distance: Pseudo distance

The length of the longest common subsequence between A
and B is also called the similitude between A and B. The
similitude between A and B is equal to the length of A minus the
pseudo distance between A and B.
We denote sim(A,B) is the similitude between A and B, and |A| is
the length of A. Then:

sim(A,B) = |A| − pdist(A,B) (2)

DENG XULIN 37 / 36

Example

If we transform ’arsala’ to ’mursil’:

▶ The longest common subsequence for these two strings
’arsala’ and ’mursil’ is ’rsl’.

▶ Insertion: arsala → aursala (1 op.)

▶ Deletion: aursala → aursal (1 op.)

▶ Substitution: aursal → mursil (2 ops.)

We denote pseudo edit distance as pdist(A,B). Then:

pdist(A,B) = 3

sim(A,B) = |A| − pdist(A,B) = 6− 3 = 3

DENG XULIN 38 / 36

Appendix: operation to get solution

▶ Case: dirAB = dirAC = diagonal:
Copy B[iB] + C [iC]− A[iA], i.e., copy the character in B or C
which does not belong to A, then move in three words at the
same time.

▶ Case: dirAB = dirAC = horizontal:
Copy the character belongs to the one with less similitude
with A.

▶ Case: dirAB = dirAC = vertical:
Move in A.

▶ Case: dirAB (resp. dirAC) = horizontal and dirAB ̸= dirAC :
Copy B[iB]. (resp. Copy C [iC].)

▶ Case: dirAB (resp. dirAC) = vertical and dirAB ̸= dirAC :
Move in A and C. (resp. Move in A and B.)

DENG XULIN 39 / 36

Pseudo Distance and Coverage Constraint

If an analogy problem has at least one solution, all the letters in
A must appear either in B or C , i.e.,

sim(A,B) + sim(A,C) ≥ |A|

Considering formula (1):

|A| ≥ pdist(A,B) + pdist(A,C)

DENG XULIN 40 / 36

Pseudo Distance and Coverage Constraint

When |A| > pdist(A,B) + pdist(A,C), some characters belong to
A are common to B and C . Such characters are also common to
the solution D. We denote the number of such characters as
com(A,B,C ,D), then:

|A| = pdist(A,B) + pdist(A,C) + com(A,B,C ,D)

So, every time before each operation of solving analogy problems,
we check the constraint. This helps the algorithm to end as soon
as it finds a failure. This is also applied in our propasal.

DENG XULIN 41 / 36

Example

For analogy:

read : do :: readable : doable

We have:

|read | = 4, pdist(read , do) = 3, pdist(read , readable) = 0

com(read , do, readable, doable) = 1

Then:

|read | = pdist(read , do) + pdist(read , readable)+

com(read , do, readable, doable) = 3 + 1 = 4

DENG XULIN 42 / 36

Compute Matrices

The formula definition of the pseudo distance is:
if min(i , j) = 0,

pdistA,B(i , j) = max(i , j) (3)

otherwise,

pdistA,B(i , j) = min

pdistA,B(i − 1, j) + 0
pdistA,B(i , j − 1) + 1
pdistA,B(i − 1, j − 1) + 1(Ai ̸=Bj)

(4)

1(Ai ̸=Bj) is an indicator function. When Ai ̸= Bj , it is 1, otherwise
it is 0.
pdistA,B(i , j) denotes the pseudo distance between the first i
characters of string A and the first j characters of string B.

DENG XULIN 43 / 36

Compute Matrices

There are three cases to determine the trace, which are three cases
of the direction of the cells (coordinate in the matrix is [i, j]) in the
pseudo distance matrix to find the traces from the end of the
matrix to the beginning of matrix. This is a method proposed by
Wagner and Fischer (1974).

▶ Case horizontal (Insertion):
pdistA,B(i , j) = pdistA,B(i − 1, j) + 0

▶ Case vertical (Deletion):
pdistA,B(i , j) = pdistA,B(i , j − 1) + 1

▶ Case diagonal (Substitution):
pdistA,B(i , j) = pdistA,B(i − 1, j − 1) + 1(Ai ̸=Bj)

DENG XULIN 44 / 36

Generation of analogy with No solution

If we generate a analogy A : B :: C : no solution .

▶ Randomly generate a string as A:

▶ Randomly select a character in A which will not appear in B
or C :

▶ Randomly generate strings without the character selected in
step 2 get B and C :

DENG XULIN 45 / 36

Generation of analogy with No solution

Example:

▶ Generate string ‘do’.

▶ Select character ‘d ’.

▶ Generate ‘two’ and ‘to’ as B and C.

Then we get analogy: do : two :: to : no solution

DENG XULIN 46 / 36

Generation of analogy with Several solutions

If we generate a analogy A : B :: C : Ds .

▶ Steps for generating A, B and C are the same as the
generation of analogy with one solution, but there is only one
insertion of sub-string in C and no insertion in B. C should
consist of only one character before the insertion.

▶ Repeat C for random times. Then get several answers
according to C.

DENG XULIN 47 / 36

Generation of analogy with Several solutions

Example:

▶ Generate string ‘abc’.

▶ Select character ‘b’ and divide ‘abc’ into ‘ab’ and ‘c’ as B
and C .

▶ Generate ‘xy ’. Insert it to get C : ‘cxy ’.

▶ Repeat C for 3 times and get C ‘cxycxycxy ’. Then we get D:
‘xycxycxy ’, ‘cxyxycxy ’, and ‘cxycxyxy ’.

Then we get analogy:
abc : ab :: cxycxycxy : xycxycxy or cxyxycxy or cxycxyxy

DENG XULIN 48 / 36

Sketch of Iterative version

def solve_nlg_i():

result_D = ''

while halting_constraint():

if constraint(com(A, B, C, D)):

if dir_AB = dir_AC = diagonal:

#do the moves in this case

elif ...

else:

break

else:

break

return result_D

DENG XULIN 49 / 36

Sketch of Recursive version

def solve_nlg_r(parameters):

if constraint(com(A, B, C, D)):

if dir_AB = dir_AC = diagonal:

#do the moves in this case

#get new parameters, store old parameters

solve_nlg_r(new_parameters)

if ...

if constraint_to_halt():

if constraint(com(A, B, C, D)):

set_result.add(result)

def solve_nlg():

set_result = set()

solve_nlg_r(parameters)

return set_result

DENG XULIN 50 / 36

	Introduction
	Foundations
	Proposal
	Data Generation
	Experiment
	Conclusion
	References
	Appendix

