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Introduction Background

Word/Sentence Embedding

Represents words or sentences as vectors. These representations
are used in:

▶ document retrieval

▶ sentiment analysis

▶ machine translation

▶ . . . . . .

Key point: Representing the meaning of the text
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Introduction Background

Word/Sentence Embedding

Word Embedding Space

king
queen

man

woman
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Introduction Background

Word/Sentence Embedding

Sentence Embedding Space

A woman working long hours.
A woman is working.

A woman is sleeping.

Figure: Visualized sentence embedding space
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Introduction Background

Sentence embedding methods

Sentence embedding learned from context

▶ Skip-thoughts (Kiros et al., 2015)

▶ Quick-thoughts (Logeswaran and Lee, 2018)
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Introduction Background

Sentence embedding methods

Sentence embedding learned from relations between
sentences

▶ InferSent (Conneau et al., 2017)

▶ Sentence-BERT (Reimers and Gurevych, 2019)

▶ SimCSE (Gao et al., 2021)
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Introduction Background

Downstream Evaluation

Table: Evaluation results of sentence embeddings. Table copied from (Li
et al., 2022). Methods based on sentence relationships perform better.

STS12-16 MR CR MPQA SST2

Skip-thoughts 43.00 76.56 79.88 86.91 82.16
Quick-thoughts 51.00 80.33 83.52 89.32 85.23
SBERT-large-NLI 75.00 84.81 90.92 90.23 90.85
SRoBERTa-large-NLI 74.00 87.07 91.41 90.60 92.25
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Introduction Background

Natural Language Inference (NLI) Corpus

Table: Example extracted from the Stanford Natural Language Inference
(SNLI) corpus (Bowman et al., 2015)

Premise Hypotheses Label

A woman working
long hours.

A woman is working. entailment
A woman is working in a factory. neutral
A woman is sleeping. contradiction
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Introduction Background

Natural Language Inference (NLI) Corpus

Relation between sentences → World knowledge
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Introduction Background

Natural Language Inference (NLI) Corpus

Construction of the SNLI corpus (Bowman et al., 2015):

▶ Crowdsourcing usinh Amazon Mechanical Turk

▶ About 2,500 human workers

▶ Premise: Flickr30k (also crowdsourcing work)

▶ Workers wrote hypothesis sentences for premise
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Introduction Our main work

Our main work

▶ Generation of sentence relationship data: DSBATS-sn
(Definition Sentences from BATS with semantic network)

▶ Evaluation of the generated sentence relationships, verification
of validity of DSBATS-sn
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Introduction Contribution

Contribution

▶ A new method to obtain the relationship between sentences
automatically with more diverse relationship types. The
extracted sentence relationship dataset is named DSBATS-sn
1.

1https://drive.google.com/drive/folders/DSBATS
ATA@ICCBR 8 / 28
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Introduction Contribution

Contribution

▶ A new evaluation task for sentence embedding based on
sentence relationships: Sentence Relationships Similarity
Distinguishing (SRSD).
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Methodology Generation of sentence relationships

Relationship source: Word analogy

king : queen :: man : woman
dog : bark :: cat : mew

beach : sand :: ocean : water
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Methodology Generation of sentence relationships

Word analogy dataset

Bigger Analogy Test Set (BATS) (Gladkova et al., 2016)
A word analogy dataset organized as analogical clusters

▶ 20 categories of semantic relationships.

▶ Each category has 50 analogy pairs.
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Methodology Generation of sentence relationships

Word analogy dataset

Animal Sounds

bee buzz/hum
dog bark/growl/howl/yelp/whine/arf/woof
cat meow/meu/purr/caterwaul
duck quack

Table: Excerpt from BATS datasets for the category E07
[Animal-Sounds] (Gladkova et al., 2016)
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Methodology Generation of sentence relationships

From word to sentence

A word analogy example from BATS (Gladkova et al., 2016).

beach : sand :: ocean : water
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Methodology Generation of sentence relationships

From word to sentence

Figure: Word analogy relation from BATS and corresponding definitions
from BabelNet (Navigli and Ponzetto, 2010).
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Methodology Generation of sentence relationships

From word to sentence

Figure: Words and definition sentences refering to the same concept.
Pictures from Wikipedia.
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Methodology Generation of sentence relationships

Sentence source: Semantic Network

Language resource in network (graph) structure:

▶ Synset → Node

▶ Relation → Edge
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Methodology Generation of sentence relationships

Sentence source: Semantic Network

BabelNet (Navigli and Ponzetto, 2010): largest multilingual
semantic network

Figure: A synset from web version BabelNet (1)
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Methodology Generation of sentence relationships

Sentence source: Semantic Network

Figure: Web version BabelNet
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Methodology Generation of sentence relationships

Generation process

Figure: Input:word analogical cluster. Output: sentence pair cluster.
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Methodology Generation of sentence relationships

Generation process

Synsets: a set of synsets. One synset points to one concept, as
well as a definition.

Figure: Synsets of “duck”, orange synsets are kept.
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Methodology Generation of sentence relationships

Filtering process

▶ Deleting synsets with named entity
Avoid the names of band, company, song, etc. In
king : queen :: man : woman, Queen is not the famous
band’s name.

▶ Deleting synsets with capitalized words
Avoid proper nouns. In acrobat : troupe :: bird : flock,
Acrobat is not the name of a software from Adobe.

▶ Deleting synsets with lower synset degree.
Avoid rarely used concepts.
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Methodology Fine-tuning objective

DSBATS for Contrastive Learning: DSBATS4CL

DSBATS-sn: Definition Sentences from BATS with semantic
network

Figure: 2 clusters extracted from DSBATS-sn
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Methodology Fine-tuning objective

Contrastive learning

Purpose of optimization contrastive learning framework:
similar → close
dissimilar → far
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Methodology Fine-tuning objective

Traditional contrastive learning loss

The loss function in contrastive learning is generally InfoNCE
(van den Oord et al., 2018). In a batch of size S , the loss of the
ith example is:

lossi = − log(
esim(xi ,xi

+)/τ

∑S
j=1 e

sim(xi ,xj+)/τ
)

similarity between positive examples
similarity between positive and negative examples
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Methodology Fine-tuning objective

Traditional contrastive learning loss

Figure: Positive examples and negative sample in traditional contrastive
learning in computer vision area
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Methodology Fine-tuning objective

Data augmentation for DSBATS-sn

Figure: 2 clusters extracted from DSBATS-sn
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Methodology Fine-tuning objective

Data augmentation for DSBATS-sn

Figure: An example of data augmentation
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Methodology Fine-tuning objective

Problems with traditional InfoNCE with DSBATS-sn

Figure: Positive and negative samples for pi in InfoNCE for contrastive
learning.
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Methodology Fine-tuning objective

Problems with traditional InfoNCE with DSBATS-sn

Figure: An example of intra-cluster data augmentation
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Methodology Fine-tuning objective

Problems with traditional InfoNCE with DSBATS-sn

Figure: An example of intra-cluster data augmentation
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Methodology Fine-tuning objective

Our loss

We only use the example as pi
− as negative example, different

from InfoNCE. In a batch of size S, the loss of the ith example is:

lossi = − log(
esim(pi ,pi

+)/τ

∑S
j=1 e

sim(pi ,pj−)/τ
)
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Methodology Fine-tuning objective

Our loss

Figure: Positive and negative samples for pi in our contrastive learning.
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Experiments

English DSBATS-sn

We generated DSBATS-sn dataset for English for 20 categories.

Encyclopedic Size Lexicographic Size

E01 country - capital 447 L01 hypernyms - animals 4318
E02 country - language 669 L02 hypernyms - misc 5005
E03 UK city - county 426 L03 hyponyms - misc 6768
E04 name - nationality 570 L04 meronyms - substance 1312
E05 name - occupation 912 L05 meronyms -part 854
E06 animal - young 566 L06 meronyms - part 4036
E07 animal - sound 633 L07 synonyms - intensity 1645
E08 animal - shelter 877 L08 synonyms - exact 1307
E09 things - color 934 L09 antonyms - gradable 5560
E10 male - female 384 L10 antonyms - binary 1453

Table: Size of English DSBATS-sn dataset.
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Experiments

Fine-tuning

Baseline models: BERT (Devlin et al., 2019), RoBERTa (Zhuang
et al., 2021), SBERT (Reimers and Gurevych, 2019)
Training set: DSBATS4CL

Training set Size

DSBATS4CL 2,244,530

Table: Size of DSBATS4CL
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Experiments

Intrinsic Evaluation

Task: Sentence Relationship Similarity Distinguishing (SRSD)

Figure: Input and output example of SRSD task
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Experiments

Intrinsic Evaluation

Test data: DSBATS-dic
Relationship source: BATS dataset
Sentence source: dictionary definitions from Oxford Dictionary,
Merriam-Webster Dictionary, and Collins Dictionary.

Category Size

L01 251
L02 225
L04 127

Table: The size of each category in DSBATS-dic
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Experiments

Extrinsic Evaluation

SentEval (Conneau and Kiela, 2018) is a tool that includes the
following evaluation tasks for English.

Task Description

STS
Semantic Textual Similarity, given a pair of
sentences, calculate a similarity score for
the two sentences

MRPC
Microsoft Research Paraphrase Corpus,
given a pair of sentences, classify them
as paraphrases or not paraphrases

Table: Introduction of extrinsic evaluation tasks
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Experiments

Evaluation results

Intrinsic eval. Extrinsic eval.

Model DSBATS4CL SRSD STS avg. MRPC

BERT
w/o 58.18 18.63 68.81
w/ 64.27 62.53 70.14

RoBERTa
w/o 58.47 43.65 71.42
w/ 65.83 65.11 71.83

SBERT
w/o 61.68 62.84 73.51
w/ 69.55 77.56 74.20

After fine-tuning with DSBATS4CL, each model achieves better
results on each task.
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Conclusion and future work

Conclusion

▶ Sentence relationships from word analogy contain world
knowledge and improve sentence embedding quality. Result
confirmed in English.

▶ The effectiveness of SRSD as an evaluation task: while the
model works better on STS and MRPC, it also performs
better on SRSD.
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Conclusion and future work

Future work

▶ Experiments on more low-resource languages

▶ Optimization of the filtering process for DSBATS-sn
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Questions

Questions
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Reference

Examples from DSBATS I

Word 1 Sentence 1 Word 2 Sentence 2

tomato

The tomato is the ed-
ible berry of the plant
Solanum lycopersicum,
commonly known as the
tomato plant.

red
Red color or pigment; the
chromatic color resem-
bling the hue of blood

potato

Annual native to South
America having under-
ground stolons bearing
edible starchy tubers;
widely cultivated as a
garden
vegetable; vines are poi-
sonous.

brown

Brown can be considered
a
composite color but is
mainly a darker shade of
red.

grass

A very large and
widespread family of
Monocotyledoneae,
with more than 10.000
species, most of which
are herbaceous, but a
few are woody. The
stems are jointed, the
long, narrow leaves
originating at the nodes.
The flowers are incon-
spicuous, with a much
reduced perianth, and
are wind-pollinated or
cleistogamous.

green

A colour sometimes re-
ferred to as Luggage or
Luggage
Green
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Reference

Examples from DSBATS II

Word 1 Sentence 1 Word 2 Sentence 2

boy A youthful male person. girl
A female human off-
spring

brother
Son of the same parents
as another person.

sister
Member of a non-
Christian religious
community of women.

bull Intact adult male. cow
Domesticated bovine an-
imals as a group regard-
less of sex or age.
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