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Introduction Background

Background

Analogy is a relationship between four objects A, B, C , and D. It
is read as ”A is to B as C is to D,” and is written as
A : B :: C : D .

please tell us
about it.

:
please tell me
about it.

::
what do you
expect us to
do?

:
what do you
expect me to
do?

he never saw
his brother
again.

:
he never saw
his sister
again.

::
he never saw
his father
again.

:
he never saw
his mother
again.
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Introduction Background

Background

▶ Analogy is a conformity of ratios between objects of the same
kind

• ratio
A : B :: C : D

• conformity
A : B :: C : D

▶ Analogy solving

• Find the solution to the analogical equation:

A : B :: C : x
⇒ x = ?

• Using predefined formula in embedding space (3CosAdd):
eB − eA = eD − eC ⇒ eD = eC + eB − eA
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Introduction Background

Background

Figure: Two methods of obtaining a corresponding sentence from a given
embedding.
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Introduction Previous work

Previous work

• Vec2Seq model proposed by (Wang and Lepage, 2020)

▶ Pre-training a single-layer LSTM network as a decoder to
transform the sentence vectors into corresponding sentences.

▶ Designing a linear fully-connected neural network responsible
for generating embeddings of the solutions of the analogy
equation.
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Previous work

• Vec2Seq model proposed by (Wang and Lepage, 2020)

▶ Pre-trained a single-layer LSTM network as a decoder to
transform sentence vectors into corresponding sentences.

▶ Linear fully-connected neural network responsible for
generating embeddings for the solution of an analogical
equation.

Analogies: from Theory to Applications (ATA@ICCBR2023) 7 / 33



Introduction Previous work

Previous work

• Wang and Lepage (2020) proposed to design a small RNN-based
decoder to transform sentence vectors into sentences, (the word
embedding sequence is obtained from fastText 1).

Figure: Schematic diagram of the decoding process.

1https://fasttext.cc/
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Introduction Previous work

Previous work

• Wang and Lepage (2020) experimented with three compositional
methods on the known vectors as inputs to the linear regression
network (LinearFCN).

Figure: Three compositional methods on the known vectors.
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Introduction Previous work

Previous work

• Limitations of the existing model:

▶ Tested on English corpora only. How about other languages?

▶ Dense distribution of the sentence in the vector space.
(decoders are sensitive to noise)

▶ Prone to generate repetitions of words as in :

• i read the book day in a day.
• my of my feet are taller than.
• are you having having any that doing?

▶ 3CosAdd (eB − eA + eC ) assumes linear properties of the
embedding space.
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Introduction Previous work

Previous work

• Chan et al. (2022) proposed a character-based word autoencoder
to solve word morphological analogies.

• Marquer et al. (2022) proposed an analogy retrieval models
(ANNr) to find the solutions of analogical equations in word vector
spaces.

Figure: ANNr model architecture. Figure copied from (Marquer et al.,
2022).
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Introduction Goal

Goals

Inspired by the work of (Wang and Lepage, 2020), we design a
generation-based method based on an autoencoder to address
sentence analogies.
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Introduction Contributions

Contributions

▶ We have designed a more stable autoencoder architecture to
reconstruct the solutions of analogical equations from the
embedding space back into sentences.
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Introduction Contributions

Contributions

▶ We propose a novel model that does not rely on predefined
formulas to solve analogical equations in the sentence
embedding space.
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Introduction Contributions

Contributions

▶ We have achieved promising results in the generation-based
approach and, to some extent, demonstrated that the
effectiveness of the 3CosAdd formula decreases for longer
sentences.
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Method Proposed methods

Vector composition method

Figure: Method to convert a sequence of word embedding representations
into a sentence representation.
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Method Proposed methods

sentence embedding method

Figure: Sketch of the encoder. Figure copied from (Chan et al., 2022).
The output is a sentence embedding.
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Method Proposed methods

Pre-training autoencoder

Figure: Structure of proposed autoencoder. 30
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Method Proposed methods

Offset network structure for analogy

Figure: Offset network structure for analogy 30

Analogies: from Theory to Applications (ATA@ICCBR2023) 17 / 33



Method Proposed methods

General architecture of embedding-to-embedding methods
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Experiments and Results Evaluation metrics

Evaluation metrics

▶ BLEU (Papineni et al., 2002): evaluates the similarity of two
sentences. Score between 0 and 100. The higher, the more
similar the two sentences.

▶ Accuracy : ratio of exact matches to the total number of
samples tested.

▶ Levenshtein distance : minimum number of edit operations
required to convert one string into another one.
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Experiments and Results Decoding sentence embedding

Decoding sentence embedding

• We extracted 85,000 sentences randomly from the Tatoeba 2

corpus for three languages.

data
Number of

sentences words/sent. character/sent.
English

Taining 70,000 6.6±1.7 27.6±8.4
Validation 8,750 6.5±1.7 27.3±8.2
Testing 8,750 6.5±1.7 27.3±8.2

French
Taining 70,000 8.7±4.9 40.0±24.9
Validation 8,750 8.7±5.0 40.0±25.3
Testing 8,750 8.7±4.9 40.0±25.0

German
Taining 70,000 8.7±5.0 44.4±28.0
Validation 8,750 8.7±5.0 44.6±28.3
Testing 8,750 8.6±4.9 44.3±28.0

2https://tatoeba.org
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Experiments and Results Decoding sentence embedding

Decoding sentence embedding

Input Model BLEU Accuracy Levenshtein distance
Vector composition method size (Mb) (%) in words in cahrs

English

simple summation 3.8 73.5±0.7 62.2 1.0 4.3
encoder of autoencoder 4.4 93.5±0.4 91.1 0.1 0.8

French

simple summation 8.8 42.2±0.9 25.9 3.3 15.2
encoder of autoencoder 11.6 68.5±1.1 56.3 1.4 9.2

German

simple summation 11.0 35.4±0.8 24.0 3.7 19.1
encoder of autoencoder 13.8 60.6±1.0 54.0 2.4 12.5

Table: Performance of the different models on three languages.

▶ In terms of accuracy, using sentence embeddings generated by
the encoder of the autoencoder outperforms the simple
summation approach by nearly 30% in all three languages.
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Experiments and Results Decoding sentence embedding

Decoding sentence embedding

Input Model BLEU Accuracy Levenshtein distance
Vector composition method size (Mb) (%) in words in cahrs

English

simple summation 3.8 73.5±0.7 62.2 1.0 4.3
encoder of autoencoder 4.4 93.5±0.4 91.1 0.1 0.8

French

simple summation 8.8 42.2±0.9 25.9 3.3 15.2
encoder of autoencoder 11.6 68.5±1.1 56.3 1.4 9.2

German

simple summation 11.0 35.4±0.8 24.0 3.7 19.1
encoder of autoencoder 13.8 60.6±1.0 54.0 2.4 12.5

Table: Performance of the different models on three languages.

▶ For French and German, which have longer sentence lengths
and vocabulary sizes, two to three times larger than that of
English, the decoding performance decreases slightly.
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Experiments and Results Decoding sentence embedding

Decoding sentence embeddings
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Figure: Performance of models on sentences with different lengths in
three different languages
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Experiments and Results Solving sentence analogies

Solving sentence analogies

• Semantico-formal analogy set (Lepage, 2019), which contains
5,607 sentence analogies in English.

Data
Number of

analogies sentences words/sent. character/sent.
Training 3,364 3,185 7.1±1.2 27.0±5.7
Validation 1,122 1,769 7.1±1.1 26.6±5.6
Testing 1,121 1,667 7.0±1.1 26.3±5.6
Total 5,607

Table: Semantico-formal analogy set from Tatoeba
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Experiments and Results Solving sentence analogies

Solving sentence analogies

• Experimental settings:

▶ Decoder model: single-layer LSTM

Experiment name Composition method Model for solving analogies
sum-FCN simple summation LinearFCN
enc-FCN encoder of autoencoder LinearFCN
enc-Offset encoder of autoencoder Offset nerwork
enc-ANNr encoder of autoencoder ANNr model

Table: Experiment names and structures
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Experiments and Results Solving sentence analogies

Solving sentence analogies

Experiment name BLEU
Accuracy Levenshtein distance

(%) in words in cahrs

sum-FCN 91.0±1.3 82.5 0.3 1.3
enc-FCN 92.0±1.3 84.6 0.2 1.0
enc-Offset 89.1±1.6 78.2 0.4 1.8
enc-ANNr 80.3±2.2 73.1 0.6 2.7

Table: Performance of the different models on semantico-formal analogy
set.

From the perspective of

▶ obtaining sentence embeddings:
encoder of autoencoder > simple summation

▶ solving analogies: FCN > Offset > ANNr
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Experiments and Results Solving sentence analogies

Solving sentence analogies

• Formal analogy set: We extracted about 10,000 sentence formal
analogies from Tatoeba in three languages using the Nlg package
(Fam and Lepage, 2018).

data
Number of

analogies sentences words/sent. character/sent.
English

Taining 8,000 18,515 5.7±1.7 22.7±8.1
Validation 1,000 3,639 5.5±1.7 22.1±7.9
Testing 1,000 3,666 5.6±1.7 22.2±8.1

French

Taining 8,000 14,803 7.0±2.7 29.7±12.3
Validation 1,000 3,482 7.0±2.9 30.1±12.8
Testing 1,000 3,478 7.0±3.0 30.1±13.4

German

Taining 8,000 12,729 6.1±2.0 29.2±10.9
Validation 1,000 3,226 6.1±2.0 28.6±10.5
Testing 1,000 3,232 6.1±1.9 28.5±10.4
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Experiments and Results Solving sentence analogies

Solving sentence analogies

Experiment name BLEU
Accuracy Levenshtein distance

(%) in words in chars

English

sum-FCN 91.0±1.8 90.8 0.3 1.0
enc-FCN 89.6±2.1 88.6 0.4 1.3
enc-Offset 80.6±2.2 76.1 0.7 2.4

French

sum-FCN 64.3±2.6 46.2 1.7 7.5
enc-FCN 71.8±2.2 57.9 1.4 5.4
enc-Offset 70.6±2.2 56.1 1.5 6.2

German

sum-FCN 73.6±2.3 62.3 0.9 3.8
enc-FCN 84.1±2.1 78.8 0.6 2.6
enc-Offset 77.0±2.3 69.0 0.8 3.6

Table: Performance of the different models on formal analogy set in three
languages.

• When sentences are short, the FCN network performs better
than the Offset network.
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Solving sentence analogies

Experiment name BLEU
Accuracy Levenshtein distance

(%) in words in chars

English

sum-FCN 91.0±1.8 90.8 0.3 1.0
enc-FCN 89.6±2.1 88.6 0.4 1.3
enc-Offset 80.6±2.2 76.1 0.7 2.4

French

sum-FCN 64.3±2.6 46.2 1.7 7.5
enc-FCN 71.8±2.2 57.9 1.4 5.4
enc-Offset 70.6±2.2 56.1 1.5 6.2

German

sum-FCN 73.6±2.3 62.3 0.9 3.8
enc-FCN 84.1±2.1 78.8 0.6 2.6
enc-Offset 77.0±2.3 69.0 0.8 3.6

Table: Performance of the different models on formal analogy set in three
languages.

• The longer the average length of sentences, the worse the
performance: French < German < English
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Experiments and Results Solving sentence analogies

Performance on longer sentences

▶ The FCN network (in conjunction with the formula from
3CosAdd to process embeddings as inputs) and the Offset
network are close in performance when the sentences are long.

▶ 3CosAdd relies on a fixed formula and cannot learn from the
dataset. It is effective for simple short sentence analogies but
may not perform well for longer sentences.
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Experiments and Results Solving sentence analogies

Performance on longer sentences

10 15 20 25 30
0

20

40

60

80

100

Sentence length (in words)

B
L
E
U

enc-Offset enc-FCN

Figure: Performance of models on sentences with different lengths in
French.
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Conclusion and Future Work Conclusion

Conclusion

▶ We proposed an auto-encoder architecture that internally
removes noise (see Page 16) to generate sentence embeddings
and reconstruct sentences, achieving high accuracy in
decoding sentence embeddings.
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Conclusion and Future Work Conclusion

Conclusion

▶ We devised an embedding-to-embedding method and a model
(see Page 17) that learns analogies from datasets in the
sentence embedding space without relying on any predefined
formula.
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Conclusion and Future Work Conclusion

Conclusion

▶ Our experiments demonstrate that this approach performs
better than a model relying on the 3CosAdd formula,
especially in cases where the sentences are longer.
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Conclusion and Future Work Future Work

Future work

▶ Explore more advanced encoder-decoder architectures that are
better suited for decoding longer sentences.

▶ Generating more meaningful sentence embeddings specifically
designed for analogies.
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Thank you for your attention.
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Appendix

Sample of analogous data set

you ’re my
friend.

:
you ’re an an-
gel.

::
she ’s my
friend.

:
she ’s an an-
gel.

tom is outgo-
ing.

:
tom had jeans
on.

:: he is outgoing. :
he had jeans
on.

french is
his mother
tongue.

:
it ’s his first
day at school.

::
french is
her mother
tongue.

:
it ’s her first
day at school.
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